
Approximate Value Iteration and Variants
Chen-Yu Wei

Value Iteration

For 𝑘 = 1, 2, …

∀𝑠, 𝑎, 𝑄𝑘 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄𝑘−1(𝑠′, 𝑎′)

unknown unknown

Idea: In each iteration, use multiple samples to estimate the right-hand side.

Value Iteration with Samples

For 𝑘 = 1, 2, …

Perform regression on 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′

𝑖=1
𝑁 to find 𝑄𝑘 such that

∀𝑠, 𝑎, 𝑄𝑘 𝑠, 𝑎 ≈ 𝑅(𝑠, 𝑎) + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) max
𝑎′

 𝑄𝑘−1(𝑠′, 𝑎′)

Obtain 𝑁 samples 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′

𝑖=1
𝑁 where 𝔼 𝑟𝑖 = 𝑅 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖

′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

Perform one iteration
of Value Iteration

Recall: Contextual Bandits with Regression

Regression Decision Rule

𝜖-Greedy Boltzmann IGW

෠𝑅(⋅,⋅) 𝜋(⋅ | ⋅) Receive 𝑥𝑖

Choose 𝑎𝑖 ∼ 𝜋(⋅ |𝑥𝑖)

Receive 𝑟𝑖

(𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖)

arm

𝜋(𝑎|𝑥)

𝑟෠𝑅
𝑥

𝑎

Train ෠𝑅 such that ෠𝑅 𝑥𝑖 , 𝑎𝑖 ≈ 𝑟𝑖

Value Iteration with Regression

Regression Decision Rule

𝜖-Greedy Boltzmann IGW

𝑄𝑘(⋅,⋅) 𝜋(⋅ | ⋅) Receive 𝑠𝑖

Choose 𝑎𝑖 ∼ 𝜋(⋅ |𝑠𝑖)

Receive 𝑟𝑖 and 𝑠𝑖
′

(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′)

arm

𝜋(𝑎|𝑠)

𝑟 + 𝛾max
𝑎′

𝑄𝑘−1(𝑠𝑖
′, 𝑎′)𝑄𝑘

𝑠

𝑎

Train 𝑄𝑘 such that 𝑄𝑘 𝑠𝑖 , 𝑎𝑖 ≈ 𝑟𝑖 + 𝛾max
𝑎′

𝑄𝑘−1(𝑠𝑖
′, 𝑎′)

This is just one iteration of Value Iteration

Value Iteration with Samples

For 𝑘 = 1, 2, …

For 𝑚 = 1, 2, … , 𝑀:

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃(𝑠𝑖 , 𝑎𝑖) − 𝑟𝑖 − 𝛾 max
𝑎′

𝑄𝜃𝑘
𝑠𝑖

′, 𝑎′ 2

2nd for-loop: trying to find 𝜃𝑘+1 = argmin
𝜃

 σ𝑖=1
𝑁 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max

𝑎′
 𝑄𝜃𝑘

𝑠𝑖
′, 𝑎′ 2

Perform one iteration
of Value Iteration

𝜃 ← 𝜃𝑘

𝜃𝑘+1 ← 𝜃

Randomly pick an 𝑖 (or a mini-batch) from 1, 2, … , 𝑁

For 𝑖 = 1, 2, … , 𝑁:

Choose action 𝑎𝑖 ∼ EG(𝑄𝜃𝑘
(𝑠𝑖 ,⋅)) // or BE or IGW

Receive reward 𝑟𝑖 ∼ 𝑅(𝑠𝑖 , 𝑎𝑖) and 𝑠𝑖
′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

𝑠𝑖+1 = 𝑠𝑖
′ if episode continues, 𝑠𝑖+1 ∼ 𝜌 if episode ends

Data collection

Target network
↑

Reusing Samples

... ...

𝑄2 𝑄3 𝑄𝑘+1𝑄1

𝒟1 = (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖′) 𝒟2 𝒟𝑘

(e.g., using 𝜖-greedy)

𝑄𝑘

The algorithm in the previous slide only use 𝒟𝑘 to train 𝜃𝑘+1.

However, as the reward function 𝑅 and transition 𝑃 remains unchanged, it is valid

(actually, even better) to reuse samples:

... ...

𝑄2 𝑄3 𝑄𝑘+1𝑄1

𝒟1 𝒟1 ∪ 𝒟2 𝒟1 ∪ 𝒟2 ∪ ⋯ ∪ 𝒟𝑘

𝑄𝑘

Benefits of Reusing Samples

● Improving data efficiency

● Every sample is used multiple times in training – just like we usually go through

multiple epochs for supervised learning tasks.

● The buffer ℬ will consist of a wider range of state-actions

● It allows better approximation of

∀𝒔, 𝒂, 𝑄𝑘+1 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄𝑘(𝑠′, 𝑎′)

Value Iteration with Reused Samples (= Deep Q-Learning or DQN)

For 𝑘 = 1, 2, …

For 𝑚 = 1, 2, … , 𝑀:

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄𝜃𝑘
𝑠𝑖

′, 𝑎′ 2

Perform one iteration
of Value Iteration

𝜃 ← 𝜃𝑘

𝜃𝑘+1 ← 𝜃

Randomly pick an 𝑖 (or a mini-batch) from ℬ

For 𝑖 = 1, 2, … , 𝑁:

Choose action 𝑎𝑖 ∼ EG(𝑄𝜃𝑘
(𝑠𝑖 ,⋅)) // or BE or IGW

Receive reward 𝑟𝑖 ∼ 𝑅(𝑠𝑖 , 𝑎𝑖) and 𝑠𝑖
′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

𝑠𝑖+1 = 𝑠𝑖
′ if episode continues, 𝑠𝑖+1 ∼ 𝜌 if episode ends

Data collection

Push (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′) to ℬ

Initialize ℬ = {} ← Replay buffer

Target network
↑

HW3 task

Another Popular Implementation

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − ∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

For 𝑖 = 1, 2, … , 𝑁:

Choose action 𝑎𝑖 ∼ EG(𝑄𝜃(𝑠𝑖 ,⋅))

Receive reward 𝑟𝑖 ∼ 𝑅(𝑠𝑖 , 𝑎𝑖) and 𝑠𝑖
′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

𝑠𝑖+1 = 𝑠𝑖
′ if episode continues, 𝑠𝑖+1 ∼ 𝜌 if episode ends

Push (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′) to ℬ

Initialize ℬ = {} ← Replay buffer

Target network
↑

HW3 task

𝜃 ← 1 − 𝜏 𝜃 + 𝜏𝜃

For 𝑚 = 1, 2, … , 𝑀:

When Does DQN Succeed?

DQN tries to approximate Value Iteration by solving

𝜃𝑘+1 = argmin
𝜃

 ෍

𝑖∈ℬ

𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃𝑘
𝑠𝑖

′, 𝑎′ 2

The true Value Iteration:

∀𝒔, 𝒂, 𝑄𝑘+1 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄𝑘(𝑠′, 𝑎′)

(1)

(2)

Under what conditions can (1) well approximate (2)?

● ℬ should contain a wide range of state-action pairs (a challenge of exploration)

● 𝑄𝜃𝑘+1
𝑠, 𝑎 should recover 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 max

𝑎′
 𝑄𝜃𝑘

(𝑠′, 𝑎′) well for all state-actions

(a challenge of function approximation, or generalization)

1. Exploration in MDPs (Not Easy)

𝐻

r=1r=0

Suppose we perform DQN with 𝜖-greedy with random initialization

⇒ On average, we need 2𝐻 episodes to see the reward

(before that, we won’t make any meaningful update and will just do random walk around

state 0)

Environment:

● Fixed-horizon MDP with episode length 𝐻

● Initial state at 0

● A single rewarding state at state 𝐻

● Actions: Go LEFT or RIGHT

1. Exploration in MDPs (Not Easy)

Suppose we perform DQN with 𝜖-greedy with random initialization

⇒ On average, we need 2𝐻 episodes to see the reward

(before that, we won’t make any meaningful update and will just do random walk around

state 0)

Environment:

● Fixed-horizon MDP with episode length 𝐻

● Initial state at 0

● A single rewarding state at state 𝐻

● Actions: Go LEFT or RIGHT

𝐻

r=1r=0r=.5

1. Exploration in MDPs (Not Easy)

𝐻

r=1r=0

Key issue:

● The 𝜖-greedy strategy (or BE, IGW) performs action-space exploration but not

state-space exploration.

● This problem becomes more severe when the reward signal is sparse and the

horizon length is long.

● To solve this, we usually require the exploration bonus (like UCB, TS), or a better

reward design. (We will discuss them much later in the course)

At this point (for the discussion of DQN), we pretend that EG, BE, or IGW will

lead to sufficient exploration over the state space.

r=.5

1. Exploration in MDPs (Not Easy)

Classic sparse-reward environments:

Mountain Car

Montezuma's Revenge

2. Function Approximation

To make DQN well approximate VI, we need

∀𝑠, 𝑎 𝑄𝜃𝑘+1
𝑠, 𝑎 ≈ 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄𝜃𝑘
(𝑠′, 𝑎′)

(𝝐-approximate) Bellman Completeness
an assumption both on the MDP and the function expressiveness

∀𝑠, 𝑎, 𝑄𝜃 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄𝜃′ 𝑠′, 𝑎′ ≤ 𝜖∀𝜃′, ∃𝜃

This allows us to quantify the regression error in each iteration.

2. Function Approximation

In HW1 you have shown

𝜖-Greedy ensures

Regret ≲ 𝜖𝑇 +
𝐴𝑇 ⋅ Err

𝜖
Err = ෍

𝑡=1

𝑇

෠𝑅𝑡 𝑥𝑡 , 𝑎𝑡 − 𝑅 𝑥𝑡 , 𝑎𝑡

2

Regression error

In value-based contextual bandits, the requirement / assumption for function approximation is

∃𝜃 ∀𝑥, 𝑎 𝑅𝜃 𝑥, 𝑎 ≈ 𝑅 𝑥, 𝑎

In value-based MDPs, the requirement / assumption for function approximation is

∀𝜃′, ∃𝜃 ∀𝑠, 𝑎 𝑄𝜃 𝑠, 𝑎 ≈ 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄𝜃′(𝑠′, 𝑎′)

Analysis of DQN assuming sufficient exploration and Bellman Completeness

2. When it terminates, it holds that

1. Value Iteration will terminate.

𝑄𝑘(𝑠, 𝑎) − 𝑄⋆(𝑠, 𝑎) ≤
𝜖

1 − 𝛾
 ∀𝑠, 𝑎

3. When it terminates, it holds that

𝑉⋆ 𝑠 − 𝑉ෝ𝜋 𝑠 ≤
2𝜖

1 − 𝛾 2 ∀𝑠

where ො𝜋 𝑠 = argmax
𝑎

 𝑄𝑘(𝑠, 𝑎)

max
𝑠,𝑎

𝑄𝑘(𝑠, 𝑎) − 𝑄𝑘−1(𝑠, 𝑎)

≤ 𝛾 max
𝑠,𝑎

𝑄𝑘−1(𝑠, 𝑎) − 𝑄𝑘−2(𝑠, 𝑎)

Recall the analysis for the exact Value Iteration:

ValueError ≤
1

1−𝛾
 BellmanError

Suboptimality ≤
1

1−𝛾
 ValueError

𝑄𝑘(𝑠, 𝑎) − 𝑄𝑘−1(𝑠, 𝑎) ≤ 𝜖 ∀𝑠, 𝑎

DQN can be offline

For 𝑘 = 1, 2, …

For 𝑚 = 1, 2, … , 𝑀:

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄𝜃𝑘
𝑠𝑖

′, 𝑎′ 2

Perform Value
Iteration

𝜃 ← 𝜃𝑘

𝜃𝑘+1 ← 𝜃

Randomly pick an 𝑖 (or a mini-batch) from ℬ

Data collection
Let ℬ consists of (𝑠, 𝑎, 𝑟, 𝑠′) tuples collected by a mixture

of arbitrary policies.

Again, its success relies on 1) ℬ contains data with sufficiently wide range of state-actions,

2) Bellman completeness.

The same theoretical analysis applies.

Handling the Non-Ideal Case

When DQN cannot well-approximate VI

In practice,

● We may not be able to collect sufficiently wide range of state-actions

● Bellman completeness may not hold

In either case, we may not have

∀𝑠, 𝑎 𝑄𝜃𝑘+1
𝑠, 𝑎 ≈ 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 max

𝑎′
 𝑄𝜃𝑘

(𝑠′, 𝑎′)

This makes our previous analysis based on VI fails.

When DQN cannot well-approximate VI

In this case, 𝑄𝜃𝑘
𝑠, 𝑎 tends to overestimate 𝑄⋆ 𝑠, 𝑎 , and the greedy policy

ො𝜋 𝑠 = argmax
𝑎

 𝑄𝜃𝑘
(𝑠, 𝑎) could be very bad.

When DQN cannot well-approximate VI

Such “seeking the error” behavior is due to “bootstrapping”

● An issue only in MDP but not in bandits

To prevent overestimation, two strategies are

● Double Q-learning: decorrelating the choice of argmax action and the error of the
value function

● Conservative Q-learning: being conservative

Double DQN (v1)

loss = 𝑄𝜃1
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃1

𝑠′, 𝑎′
2

𝜃1 𝜃1

loss = 𝑄𝜃2
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃2

𝑠′, 𝑎′
2

𝜃2 𝜃2

max
𝑎′

max
𝑎′

Double DQN (v1)

loss = 𝑄𝜃1
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃1

𝑠′, 𝑎′
2

𝜃1 𝜃1

loss = 𝑄𝜃2
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃2

𝑠′, 𝑎′
2

𝜃2 𝜃2

argmax
𝑎′

𝑄𝜃2
𝑠′, 𝑎′ argmax

𝑎′
𝑄𝜃1

𝑠′, 𝑎′

Double DQN (v2)

loss = 𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃 𝑠′, 𝑎′
2

𝜃 𝜃

argmax
𝑎′

𝑄𝜃 𝑠′, 𝑎′

Hado van Hasselt, Arthur Guez, David Silver. Deep Reinforcement Learning with Double Q-learning. 2015.

Conservative Q-learning (CQL)

𝜃𝑘+1 = argmin
𝜃

 ෍

𝑖∈ℬ

𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃𝑘
𝑠𝑖

′, 𝑎′ 2

+ 𝛼 ෍

𝑖∈ℬ

 log ෍

𝑎

exp 𝑄𝜃(𝑠𝑖 , 𝑎) − 𝑄𝜃(𝑠𝑖 , 𝑎𝑖)

= argmin
𝜃

 ෍

𝑖∈ℬ

𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃𝑘
𝑠𝑖

′, 𝑎′ 2

+ 𝛼 ෍

𝑖∈ℬ

max
𝜇

෍

𝑎

𝜇 𝑎 𝑠𝑖 𝑄𝜃(𝑠𝑖 , 𝑎) − 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − KL 𝜇 ⋅ 𝑠𝑖 , Unif

Aviral Kumar, Aurick Zhou, George Tucker, Sergey Levine Conservative Q-Learning for Offline Reinforcement Learning. 2020.

Comparison

● Double-Q: make the argmax
𝑎

 𝑄𝜃(𝑠, 𝑎) choice decoupled from 𝜃

● Conservative-Q: mitigate the overestimation of max
𝑎

 𝑄𝜃(𝑠𝑖 , 𝑎) over 𝑄𝜃(𝑠𝑖 , 𝑎𝑖)

Summary for DQN

● Motivation: approximating Value Iteration using samples and function

approximation

● Standard elements: target network, replay buffer

● Work as desired when both of the following conditions hold:

● The learner is able to obtain exploratory data (online or offline)

● Neural network is sufficiently expressive: Bellman completeness

● When the conditions above do not hold

● Tends to overestimate 𝑄 values and suggest arbitrary actions

● Solutions

● Double Q-learning

● Conservative Q-learning

Improvements on DQN

● Dueling DDQN

● Prioritized replay

● Distributional DQN

● …

Rainbow: Combining Improvements in Deep

Reinforcement Learning. 2018.

Other Variants that Fail

An Unstable Variant

DQN without target network

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

𝜃 ← 𝜃

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄
𝜃

𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

𝜃 ← 1 − 𝜏 𝜃 + 𝜏𝜃

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄
𝜃

𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

𝜃 ← 𝜃

𝜃 ← 𝜃

For 𝑚 = 1, … , 𝑀:

cf. DQN with target network

An Unstable Variant

Diverges even when exploration assumption and Bellman completeness hold

𝜙 𝑠1, 𝑎 = (1,0) 𝜙 𝑠2, 𝑎 = (2,1)

𝑠1 𝑠2

Simplified from the “Baird’s counterexample”

(see Sutton and Barto Section 11.2)

𝑟 = 1
𝑟 = 0

The Effect of Target Network

𝜃 ← 𝜃 − 𝛼 𝜙 𝑠, 𝑎 ⊤𝜃 − 𝑟 − 𝛾𝜙 𝑠′, 𝑎
⊤

𝜃𝑘 𝜙(𝑠, 𝑎)

For 𝑘 = 1, 2, … 𝐾

For 𝑖 = 1, … , 𝑁:

𝜃𝑘 ← 𝜃

𝜃𝑘+1 ← 𝜃

Sample 𝑠, 𝑎, 𝑟, 𝑠′ ∼ Uniform 𝑠1, 𝑎, 1, 𝑠2 , (𝑠2, 𝑎, 0, 𝑠2)

Let 𝐾𝑁 = 100000

The Effect of Target Network

N=1

N=250

N=230

N=210

N=190

N=170

N=150

N=5000

N=2000

N=1000

N=800

N=500

N=300

A Biased Variant

DQN without stop gradient

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄
𝜃

𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

𝜃 ← 1 − 𝜏 𝜃 + 𝜏𝜃

For 𝑘 = 1, 2, …

𝜃 ← 𝜃 − 𝛼∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max
𝑎′

 𝑄
𝜃

𝑠𝑖
′, 𝑎′ 2

Randomly pick an 𝑖 (or a mini-batch) from ℬ

𝜃 ← 𝜃

𝜃 ← 𝜃

For 𝑚 = 1, … , 𝑀:

cf. standard DQN

A Biased Variant

This variant will converge (as it is similar to standard SGD), but the solution it

converges to could be undesirable.

෍

𝑖∈ℬ

𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ 2

The underlying loss function of this algorithm is

Variants that Fail

● Both variants, while look somewhat reasonable, deviate from the idea of

Value Iteration.

	Slide 1: Approximate Value Iteration and Variants
	Slide 2: Value Iteration
	Slide 3: Value Iteration with Samples
	Slide 4: Recall: Contextual Bandits with Regression
	Slide 5: Value Iteration with Regression
	Slide 6: Value Iteration with Samples
	Slide 7: Reusing Samples
	Slide 8: Benefits of Reusing Samples
	Slide 9: Value Iteration with Reused Samples (= Deep Q-Learning or DQN)
	Slide 10: Another Popular Implementation
	Slide 11: When Does DQN Succeed?
	Slide 12: 1. Exploration in MDPs (Not Easy)
	Slide 13: 1. Exploration in MDPs (Not Easy)
	Slide 14: 1. Exploration in MDPs (Not Easy)
	Slide 15: 1. Exploration in MDPs (Not Easy)
	Slide 16: 2. Function Approximation
	Slide 17: 2. Function Approximation
	Slide 18: Analysis of DQN assuming sufficient exploration and Bellman Completeness
	Slide 19: DQN can be offline
	Slide 20: Handling the Non-Ideal Case
	Slide 21: When DQN cannot well-approximate VI
	Slide 22: When DQN cannot well-approximate VI
	Slide 23: When DQN cannot well-approximate VI
	Slide 24: Double DQN (v1)
	Slide 25: Double DQN (v1)
	Slide 26: Double DQN (v2)
	Slide 27: Conservative Q-learning (CQL)
	Slide 28: Comparison
	Slide 29: Summary for DQN
	Slide 30: Improvements on DQN
	Slide 31: Other Variants that Fail
	Slide 32: An Unstable Variant
	Slide 33: An Unstable Variant
	Slide 34: The Effect of Target Network
	Slide 35: The Effect of Target Network
	Slide 36
	Slide 37
	Slide 38: A Biased Variant
	Slide 39: A Biased Variant
	Slide 40: Variants that Fail

