
Homework 1

6501 Reinforcement Learning (Spring 2025)

Deadline: 11:59pm, February 7, 2025

You may type or handwrite your solution. If handwritten, take photos and compile them into a PDF file before
submitting it on Gradescope.

1 ϵ-greedy for contextual bandits

In this problem, we will derive the regret bound of ϵ-greedy in contextual bandits with a regression oracle (Page 40 here).
Consider the algorithm below.

Algorithm 1 ϵ-Greedy
Parameter: ϵ ∈ [0, 1], A (number of actions)
Given: A regression oracle
for t = 1, 2, . . . , T do

Receive xt, and obtain R̂t from the regression oracle.
Define

πt(a) =

{
1− ϵ+ ϵ

A if a = argmaxa′ R̂t(xt, a
′)

ϵ
A otherwise

Sample at ∼ πt, and receive rt = R(xt, at) + wt.

Define a⋆t = argmaxa R(xt, a). Assume that R(x, a) ∈ [0, 1] and R̂t(x, a) ∈ [0, 1] for any x, a, t.

(a) (5%) Show the following inequality. Note that the left-hand side is the expected regret at round t, and the right-hand
side is ϵ plus the estimation error of the regression oracle.

R(xt, a
⋆
t )− Ea∼πt

[R(xt, a)] ≤ ϵ+R(xt, a
⋆
t )− R̂t(xt, a

⋆
t )︸ ︷︷ ︸

estimation error on a⋆
t

+Ea∼πt

[
R̂t(xt, a)−R(xt, a)

]
︸ ︷︷ ︸

estimation error on at

.

(b) (5%) Show that the two estimation error terms in (a) can be bounded as

Ea∼πt

[
R̂t(xt, a)−R(xt, a)

]
≤

√
Ea∼πt

[(
R̂t(xt, a)−R(xt, a)

)2
]
,

R(xt, a
⋆
t )− R̂t(xt, a

⋆
t ) ≤

√
1

πt(a⋆t )
Ea∼πt

[(
R̂t(xt, a)−R(xt, a)

)2
]
,

respectively.

(c) (5%) Combining (a) and (b), show that the one-step expected regret at round t can be upper bounded as

R(xt, a
⋆
t )− Ea∼pt

[R(xt, a)] ≤ ϵ+ 2

√
A

ϵ
· Ea∼πt

[(
R̂t(xt, a)−R(xt, a)

)2
]
.
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(Hint: note that πt(a
⋆
t ) ≥ ϵ

A )

(d) (5%) Show that expected total regret E
[∑T

t=1 (R(xt, a
⋆
t )−R(xt, at))

]
can be upper bounded by

ϵT + 2

√
ATE [Err]

ϵ
,

where Err is the total regression error defined as

Err =
T∑

t=1

Ea∼πt

[(
R̂t(xt, a)−R(xt, a)

)2
]
.

2 O(log T ) regret bound for UCB

In the class, we showed that the regret incurred in UCB is bounded by Õ(
√
AT ). In this problem, we will show that the

same algorithm in fact ensures a more favorable O(A log T ) regret when the mean of the best arm has a constant gap
with the mean of other arms. We first define the following quantities: Let R(a) ∈ [0, 1] be the true mean of the reward of
arm a. Define R⋆ ≜ maxa∈[A] R(a) and ∆(a) = R⋆ −R(a).

We consider the UCB algorithm described in Algorithm 2 (the same as presented in the class). Assume that the number
of arms A is less or equal to the number of rounds T , and assume wt is zero-mean and 1-sub-Gaussian.

Algorithm 2 UCB for multi-armed bandits
Input: A (number of arms), T (total number of rounds), δ (failure probability).
for t = 1, . . . , A do

Draw at = t and observe rt = R(at) + wt.
for t = A+ 1, . . . , T do

Define

Nt(a) =

t−1∑
s=1

I{as = a}, R̂t(a) =

∑t−1
s=1 I{as = a}rs

Nt(a)
, conft(a) =

√
2 log(2/δ)

Nt(a)
, R̃t(a) = R̂t(a) + conft(a).

Draw at = argmaxa R̃t(a) and observe rt = R(at) + wt.

Recall that the regret is defined as Regret = TR⋆ −
∑T

t=1 R(at).

(a) (4%) Use Theorem 1 to show that with probability 1−ATδ, |R̂t(a)−R(a)| ≤ conft(a) for all time t and arm a.

(b) (4%) Assume that the inequality in (a) holds for all t and a. Prove that for any sub-optimal arm a (i.e., ∆(a) > 0), if
Nt(a) >

8 log(2/δ)
∆(a)2 , then conft(a) <

∆(a)
2 and R̃t(a) < R(a) + ∆(a).

(Hint: For the second inequality, you have to use the inequality in (a))

(c) (4%) Assume that the inequality in (a) holds for all t and a. Prove that for any optimal arm a⋆ (i.e., ∆(a⋆) = 0),
R̃t(a

⋆) ≥ R(a⋆) for all t.

(d) (4%) Assume that the inequality in (a) holds for all t and a. Prove that for any sub-optimal arm a (i.e., ∆(a) > 0), if
Nt(a) >

8 log(2/δ)
∆(a)2 , then arm a will NOT be drawn at round t.

(Hint: Use (b) and (c) to show R̃t(a) < R̃t(a
⋆))

(e) (4%) Assume that the inequality in (a) holds for all t and a. Argue that any sub-optimal arm a will not be drawn more
than 8 log(2/δ)

∆(a)2 +1 times. Then show that the regret is upper bounded by
∑

a:R(a) ̸=R⋆ min
{
T∆(a), 8 log(2/δ)

∆(a) +∆(a)
}

with probability at least 1−ATδ.
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3 Survey

(a) (3%) How much time did you use to complete each of the problems in this homework? Do you have any suggestion
for the course? (e.g., the pace of the lecture, the length of the homework)

Appendix

Theorem 1 (Hoeffding’s Inequality). Let X1, X2, . . . , XN be i.i.d. σ-sub-Gaussian random variables with mean µ.
Then with probability at least 1− δ, ∣∣∣∣∣ 1N

N∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

2 log(2/δ)

N
.
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