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1 Gradient Estimators in Continuous Action Spaces

In this problem, we consider the following algorithmic framework (Algorithm 1) for continuous action sets. For
simplicity, we assume the action set is the entire Rd (unconstrained).

Algorithm 1 Policy update framework for continuous action sets
Parameter: σ.
Initialize a neural network µθ : X → Rd, where X is the space of contexts, and d is the dimension of the action set.
Let θ1 be the initial weights.
for t = 1, 2, . . . , T do

Receive context xt.
Sample at ∼ N (µθt(xt), σ

2I).
Receive rt(xt, at).
Obtain θt+1 from θt and the reward feedback (there could be different ways to perform this update).

Let bt : X → R be an arbitrary time-varying baseline function, and let gt be the one-point gradient estimator constructed
as the following:

gt =
1

σ2
(at − µθt(xt))(rt(xt, at)− bt(xt)).

Below, we use∇art to denote the gradient of rt with respect its second argument (i.e., action). That is, for any (x0, a0),
∇art(x0, a0) = ∇art(x0, a)|a=a0

.

(a) (5%) Assume that rt(xt, ·) is an affine function under any context xt. In other words, there exist vt(xt) ∈ Rd and
ct(xt) ∈ R such that

∀a, rt(xt, a) = ct(xt) + vt(xt)
⊤a.

Prove that gt is an unbiased gradient estimator, i.e., Eat
[gt] = vt(xt), where Eat

[·] denotes the expectation over the
randomness of at.
Hint: We did this proof in Page 17 of this slide under a slightly different setting and notation. You only need to
repeat that proof with slight adaptation. The hand writing there does not include per-step explanations (because they
were given orally in the class), but make sure you explain every step when writing your proof.

(b) (5%) Assume that rt(xt, ·) is an L-smooth function under any context xt. Prove that the bias of gt satisfies

∥Eat [gt]−∇art(xt, µθt(xt))∥ ≤
√

d(d+ 2)(d+ 4)

4
Lσ.
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Hint: A function f : Rd → R is called L-smooth if for any a, b, ∥∇f(a)−∇f(b)∥ ≤ L∥a− b∥. This means that
the gradient changes slowly, and thus we can locally approximate a smooth function by an affine function. Indeed,
using Lemma 1, we are able to bound∣∣∣∣∣rt(xt, a)−

[
rt(xt, µθt(xt)) +∇art(xt, µθt(xt))

⊤(a− µθt(xt))
]︸ ︷︷ ︸

Taylor expansion up to the first-order term

∣∣∣∣∣ ≤ L

2
∥a− µθt(xt)∥2.

Therefore, you can repeat similar proof as in (a), but considering the error resulted from approximating rt(xt, ·) by
an affine function. You may want to use Lemma 2 in the appendix.

The following two questions do not rely on the results of (a) and (b), so you can work on them without first working out
(a) and (b). Define policy πθ as

πθ(a|x) =
1

(2πσ2)
d
2

exp

(
−∥a− µθ(x)∥2

2σ2

)
.

This is essentially the policy being executed in Algorithm 1.

(c) (5%) Show that the unclipped and unbatched PPO update

θt+1 ← argmax
θ

{
πθ(at|xt)

πθt(at|xt)
(rt(xt, at)− bt(xt))−

1

η
KL (πθ(·|xt), πθt(·|xt))

}
is approximately equivalent to

θt+1 ← argmax
θ

{
⟨µθ(xt)− µθt(xt), gt⟩ −

1

2ησ2
∥µθ(xt)− µθt(xt)∥2

}
when η is close to zero (thus θt+1 ≈ θt).
Hint: It suffices to show that the expressions in the two argmax{·}’s are approximately equal or off by a constant
unrelated to θ. The approximation you may want to use is exp(u) ≈ 1 + u for u ∈ R close to zero.

(d) (5%) Show that the PG update

θt+1 ← θt + η∇θ log πθ(at|xt)
∣∣∣
θ=θt

(rt(xt, at)− bt(xt))

is approximately equivalent to

θt+1 ← argmax
θ

{
⟨µθ(xt)− µθt(xt), gt⟩ −

1

2η
∥θ − θt∥2

}
when η is close to zero (thus θt+1 ≈ θt).
Hint: The approximation you may want to use is fθ′(x)− fθ(x) ≈ (θ′ − θ)⊤∇θfθ(x) for θ′ ≈ θ and for function
fθ : X → R that is smooth in θ.

(c) and (d) verify again that PPO and PG differ in the distance measure they use to regularize the policy updates.
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A Appendix

Lemma 1. If f : Rd → R is L-smooth, then for any a, b,∣∣f(a)− [
f(b) +∇f(b)⊤(a− b)

]∣∣ ≤ L

2
∥a− b∥2.

Proof. By Taylor’s theorem, there exists a′ that lies in the line segment between a and b such that

f(a)− f(b) = ∇f(b)⊤(a− b) +
1

2
(a− b)⊤∇2f(a′)(a− b)

The smoothness assumption implies that
∣∣(a− b)⊤∇2f(a′)(a− b)

∣∣ ≤ L∥a− b∥2 and thus the desired inequality.

Lemma 2. Let X ∈ Rd be a multivariate Gaussian following X ∼ N (0, Id). Then

E
[
∥X∥6

]
= d(d+ 2)(d+ 4).

Proof. Since X ∈ Rd follows the standard Gaussian, ∥X∥2 follows the chi-square distribution with degree d [1]. Then
by [2], E[(∥X∥2)3] can be calculated as

∏2
k=0(d+ 2k) = d(d+ 2)(d+ 4).
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