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Multi-Armed Bandits
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Multi-Armed Bandits

Given:  arm set 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇: 

 Learner chooses an arm 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅 𝑎𝑡 + 𝑤𝑡

Assumption:   𝑅 𝑎  is the (hidden) ground-truth reward function 

                         𝑤𝑡 is a zero-mean noise

Goal:   maximize the total reward σ𝑡=1
𝑇 𝑅(𝑎𝑡)   (or σ𝑡=1

𝑇 𝑟𝑡) 

Arm = Action



How to Evaluate an Algorithm’s Performance? 

● “My algorithm obtains 0.3𝑇 total reward within 𝑇 rounds” 

 – Is my algorithm good or bad? 

● Benchmarking the problem

max
𝜋



𝑡=1

𝑇

𝑅(𝜋) − 

𝑡=1

𝑇

𝑅(𝑎𝑡)

The total reward of the best policy

=  max
𝑎

 𝑇𝑅(𝑎) − 

𝑡=1

𝑇

𝑅(𝑎𝑡)

In MAB

Regret ∶=

● “My algorithm ensures Regret ≤ 5𝑇
3

4
 
”

● Regret = 𝑜 𝑇  ⇒  the algorithm is as good as the optimal policy asymptotically



Multi-Armed Bandits 

● Key challenge: Exploration 

● The other three challenges we will discuss for RL

● Generalization (there is no input in MAB)

● Temporal credit assignments (there is no delayed feedback)

● Distribution mismatch (there is no pre-collected data) 

● We will discuss about two categories of exploration strategies

● Based on mean estimation

● Based on mean and uncertainty estimation



Multi-Armed Bandits
Based on mean estimation



The Exploration and Exploitation Trade-off in MAB

● To perform as well as the best policy (i.e., best arm) asymptotically, the 

learner has to pull the best arm most of the time 

     ⇒ need to exploit

● To identify the best arm, the learner has to try every arm sufficiently many 

times

    ⇒ need to explore



A Simple Strategy: Explore-then-Exploit 

What is the right amount of exploration (𝑇0)? 

Explore-then-exploit (Parameter: 𝑇0)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean 𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 𝑅(𝑎) (Exploit) 



Another Simple Strategy: 𝝐-Greedy

Take action

𝑎𝑡 = ቊ
 uniform 𝒜  with prob.  𝜖 

argmax𝑎 𝑅𝑡 𝑎  with prob.  1 − 𝜖

where 𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠=𝑎  𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠=𝑎  

is the empirical mean of arm 𝑎 using samples 

up to time 𝑡 − 1.  

𝝐-Greedy  (Parameter: 𝜖)

In the first 𝐴 rounds, draw each arm once. 

In the remaining rounds 𝑡 > 𝐴, 

Mixing exploration and exploitation in time 

(Explore) 

(Exploit) 



Comparison

● 𝜖-Greedy is more robust to non-stationarity than Explore-then-Exploit

● 𝜖-Greedy has a better performance in the early phase of the learning process



Quantifying the Estimation Error

In the exploration phase, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question: 

some decreasing function of 𝑁

𝑓(𝑁)?



Quantifying the Estimation Error
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Quantifying the Estimation Error

In the exploration phase, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question: 

some decreasing function of 𝑁

𝑓(𝑁)?



Quantifying the Estimation Error

In the exploration phase, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question:  

some decreasing function of 𝑁

𝑓(𝑁, 𝛿)?

With probability at least 1 − 𝛿, 



Quantifying the Error:  Concentration Inequality

Let 𝑋1, … , 𝑋𝑁 be independent 𝜎-sub-Gaussian random variables. 

Then with probability at least 1 − 𝛿, 

1

𝑁


𝑖=1

𝑁

𝑋𝑖 −
1

𝑁


𝑖=1

𝑁

𝔼[𝑋𝑖] ≤ 𝜎
2 log 2/𝛿

𝑁
 .

Theorem.  Hoeffding’s Inequality

A random variable is called 𝜎-sub-Gaussian if  𝔼 𝑒𝜆(𝑋−𝔼[𝑋]) ≤ 𝑒𝜆2𝜎2/2   ∀𝜆 ∈ ℝ.

Fact 1. 𝒩(𝜇, 𝜎2) is 𝜎-sub-Gaussian. 

Fact 2. A random variable ∈ [𝑎, 𝑏] is (𝑏 − 𝑎)-sub-Gaussian.

Intuition:  tail probability Pr |𝑋 − 𝔼 𝑋 | ≥ 𝑧  bounded by that of Gaussians



Quantifying the Estimation Error

Omit constants and log(1/𝛿) factors

With high probability,   𝑅 𝑎 − 𝑅 𝑎  = ෨𝑂
1

𝑁

With probability at least 1 − 𝛿,    𝑅 𝑎 − 𝑅 𝑎  = 𝑂
log (1/𝛿)

𝑁

Omit constants



Explore-then-Exploit Regret Bound Analysis

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. 

Compute the empirical mean 𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 𝑅(𝑎)



Regret Bound of Explore-then-Exploit and 𝝐-Greedy 

Then Explore-then-Exploit ensures with high probability, 

Regret ≲ 𝑇0 + 𝑇
𝐴

𝑇0
 

Theorem.  Regret Bound of Explore-then-Exploit

Suppose that 𝑅 𝑎 ∈ [0,1] and 𝑤𝑡 is 1-sub-Gaussian. 

Then 𝜖-Greedy ensures with high probability, 

Regret ≲ 𝜖𝑇 +
𝐴𝑇

𝜖
 

Theorem.  Regret Bound of 𝝐-Greedy  (Your Exercise) 

Suppose that 𝑅 𝑎 ∈ [0,1] and 𝑤𝑡 is 1-sub-Gaussian. 

≈ 𝐴1/3𝑇2/3 (choosing 𝑇0 = 𝐴1/3𝑇2/3)

≈ 𝐴1/3𝑇2/3 (choosing 𝜖 =
𝐴

𝑇

1/3
)



Can We Do Better?

In explore-then-exploit and 𝜖-greedy, the probability to choose arms do not depend 

on the estimated mean (except for the empirically best arm).  

… Maybe, the probability of choosing arms can be adaptive to the estimated mean? 

Solution: Refine the amount of exploration for each arm based on the current 

mean estimation. 

(Has to do this carefully to avoid under-exploration)



Refined Exploration

In each round, sample 𝑎𝑡 according to

𝜋𝑡 𝑎 ∝  exp 𝜆 𝑅𝑡(𝑎)

where 𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1.  

Boltzmann Exploration  (Parameter: 𝜆)

𝜋𝑡 𝑎 =
1

𝛾𝑡 − 𝜆 𝑅𝑡(𝑎)
=

1

𝛾𝑡
′ + 𝜆Gap𝑡(𝑎)

Inverse Gap Weighting  (Parameter: 𝜆) 𝛾𝑡 is a normalization factor 

that makes σ𝑎 𝜋𝑡 𝑎 = 1 

where Gap𝑡 𝑎 = max
𝑏

 𝑅𝑡 𝑏 − 𝑅𝑡(𝑎) 



Refined Exploration

𝜋𝑡 𝑎 =

1

𝐴 + 𝜆Gap𝑡(𝑎)

1 − 

𝑎′≠𝑎

𝜋𝑡(𝑎′)

Variant of Inverse Gap Weighting Easier for Implementation (Parameter: 𝜆)

where Gap𝑡 𝑎 = max
𝑏

 𝑅𝑡 𝑏 − 𝑅𝑡(𝑎) 

if 𝑎 ≠ argmax 𝑅𝑡(𝑎) 

if 𝑎 = argmax 𝑅𝑡(𝑎) 



Refined Exploration

● Boltzmann Exploration

● A quite commonly used exploration strategy (like 𝜖-greedy)

● However, it’s theoretically less desirable.  For fixed parameter 𝜆 ≥ 2log 𝑡, there is always 

a problem instance making BE suffer Θ(𝑇) regret

● There is no known regret bound for it yet (?) 

Cesa-Bianchi, Gentile, Lugosi, Neu.  Boltzmann Exploration Done Right,  2017.

Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally.  2021. 

● Inverse Gap Weighting

● Less well-known

● We can show a near-optimal regret bound 𝐴𝑇 for it, improving the 𝐴1/3𝑇2/3 by 𝜖-greedy  

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.

 



Guarantee of Inverse Gap Weighting

Inverse Gap Weighting ensures with high probability, 

Regret ≲
𝐴

𝜆
+ 𝜆 log 𝑇 ≈ 𝐴𝑇 log 𝑇 (choosing 𝜆 =

𝑇

𝐴 log 𝑇
)

D. Foster and A. Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.

See supplementary materials for a formal proof.



Summary: MAB Based on Mean Estimation

For 𝑡 = 1, 2, … , 𝑇, 

      Design a distribution 𝜋𝑡(⋅) based on the current mean estimation 𝑅𝑡(⋅) 

      Sample an arm 𝑎𝑡 ∼ 𝜋𝑡 and receive the corresponding reward 𝑟𝑡. 

      Refine the mean estimation 𝑅𝑡+1(⋅) with the new sample (𝑎𝑡 , 𝑟𝑡).  

𝜋𝑡 𝑎 =
1

𝛾𝑡 − 𝜆 𝑅𝑡(𝑎)

𝜋𝑡 𝑎 ∝  exp 𝜆 𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax 𝑅𝑡(⋅) +
𝜖

𝐴
EG

BE

IGW 𝐴𝑇 log 𝑇

𝐴1/3𝑇2/3

XXX



Summary: MAB Based on Mean Estimation

Mean Estimation Decision Rule

𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠 = 𝑎 𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠 = 𝑎  

𝑅𝑡(⋅) 𝜋𝑡(⋅)
Pick action 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

𝜖-Greedy Boltzmann IGW

𝜋𝑡 𝑎 =
1

𝛾𝑡 − 𝜆 𝑅𝑡(𝑎)

𝜋𝑡 𝑎 ∝  exp 𝜆 𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax 𝑅𝑡(⋅) +
𝜖

𝐴

arm

𝜋𝑡(𝑎)



Summary: MAB Based on Mean Estimation

● All 3 methods are based on the same mean estimation

● 𝜖-Greedy, Boltzmann exploration, Inverse gap weighting

● The key difference is in the decision rule, i.e., the mapping from estimated 

means 𝑅𝑡 to a distribution 𝜋𝑡. 

● The shape of the mapping makes differences

● There is a scalar hyperparameter that allows for a tradeoff between 

exploration and exploitation (𝜖 in EG, 𝜆 in BE or IGW)



Some Experiments

𝑇 = 10000 rounds

𝐴 = 2 arms

Reward mean 𝑅 = [0.5, 0.5 − Δ]

Bernoulli distribution

Time-dependent parameters

30 random seeds 

Observations:  

● Bound from theory could be loose

-- theory captures worst-case guarantee

● Most algorithms seem to have its worst 

regret at some intermediate Δ value

-- will be studied in Homework 1



Contextual Bandits
Based on reward function estimation



Multi-Armed Bandits vs. Contextual Bandits

Multi-Armed Bandit

4.2

?

?

Contextual BanditContext

4.2

?

?

e.g. the user’s history, 

location, social network 

activity, …

all-user recommendation

personalized recommendation



Contextual Bandits Generalizes MAB and SL

Multi-Armed Bandit

4.2

?

?

Supervised Learning

4.2

5.0

3.1

Input

No input, bandit feedback Takes input, full-information feedback

Contextual Bandit

4.2

?

?

Input

Takes input, bandit feedback

Generalization

Exploration

Credit assignment

Generalization

Exploration

Credit assignment

Generalization

Exploration

Credit assignment



Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇: 

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅(𝑥𝑡 , 𝑎𝑡) + 𝑤𝑡



Discussion

● Contextual bandits is a minimal simultaneous generalization of supervised 

learning (SL) and multi-armed bandits (MAB) 

● We learned a lot about SL in machine learning courses 

● We just learned some simple MAB algorithms

● 3 strategies based on mean estimation

● Question:  Can you design a contextual bandits algorithm based on the 

techniques you know for SL and MAB? 



Two ways to leverage SL techniques in CB

𝑥: context,  𝑎: action,  𝑟: reward 

𝑟𝑅
𝑥

𝑎

Learn a mapping from 

(context, action) to reward

𝑎𝜋𝑥

Learn a mapping from 

context to action (or action distribution)

CB with regression oracle  CB with classification oracle  

Value-based approach Policy-based approach

(discussed next) (slightly later in the course)



Recall: MAB Based on Mean Estimation

Mean Estimation Decision Rule

𝜖-Greedy Boltzmann IGW

𝜋𝑡 𝑎 =
1

𝛾𝑡 − 𝜆 𝑅𝑡(𝑎)

𝜋𝑡 𝑎 ∝  exp 𝜆 𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax 𝑅𝑡(⋅) +
𝜖

𝐴

𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠 = 𝑎 𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠 = 𝑎  

𝑅𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎)



CB Based on Reward Function Estimation (Regression)

Regression Decision Rule

𝜖-Greedy Boltzmann IGW

𝜋𝑡 𝑎|𝑥 =
1

𝛾𝑡 − 𝜆 𝑅𝑡(𝑥, 𝑎)

𝜋𝑡 𝑎|𝑥 ∝  exp 𝜆 𝑅𝑡(𝑥, 𝑎)   

𝜋𝑡 𝑎|𝑥 = 1 − 𝜖 𝕀 𝑎 = argmax 𝑅𝑡(𝑥,⋅) +
𝜖

𝐴

𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎|𝑥)

𝑟𝑅
𝑥

𝑎

Train a 𝑅 such that 𝑟𝑖 ≈ 𝑅(𝑥𝑖 , 𝑎𝑖)



CB Based on Reward Function Estimation

For 𝑡 = 1, 2, … , 𝑇, 

      Receive context 𝑥𝑡

      Design a distribution 𝜋𝑡 ⋅ 𝑥𝑡) based on the estimated reward 𝑅𝑡(𝑥𝑡,⋅) 

      Sample an action 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) and receive the corresponding reward 𝑟𝑡. 

      Refine the reward estimator 𝑅𝑡+1(⋅,⋅) with the new sample (𝑥𝑡, 𝑎𝑡 , 𝑟𝑡).  

𝜋𝑡 𝑎|𝑥𝑡 =
1

𝛾𝑡 − 𝜆 𝑅𝑡(𝑥𝑡, 𝑎)

𝜋𝑡 𝑎|𝑥𝑡 ∝  exp 𝜆 𝑅𝑡(𝑥𝑡, 𝑎)   

𝜋𝑡 𝑎|𝑥𝑡 = 1 − 𝜖 𝕀 𝑎 = argmax 𝑅𝑡(𝑥𝑡 ,⋅) +
𝜖

𝐴
EG

BE

IGW

Instantiate a regression procedure 𝑅1



Regret in Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇: 

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅(𝑥𝑡 , 𝑎𝑡) + 𝑤𝑡

Regret = 

𝑡=1

𝑇

𝑅(𝑥𝑡, 𝜋⋆(𝑥𝑡)) − 

𝑡=1

𝑇

𝑅 𝑥𝑡 , 𝑎𝑡 Benchmark policy:

= 

𝑡=1

𝑇

max
𝑎∈𝒜

 𝑅(𝑥𝑡 , 𝑎) − 

𝑡=1

𝑇

𝑅 𝑥𝑡 , 𝑎𝑡

𝜋⋆ 𝑥 = argmax
𝑎∈𝒜

 𝑅(𝑥, 𝑎) 



Regret in Contextual Bandits

Regret Bound of 𝝐-Greedy

𝜖-Greedy ensures

Regret ≲ 𝜖𝑇 +
𝐴𝑇 ⋅ Err

𝜖

Regret Bound of Inverse Gap Weighting

IGW ensures

Regret ≲
𝐴𝑇

𝜆
+ 𝜆 ⋅ Err

Err = 

𝑡=1

𝑇

𝑅𝑡 𝑥𝑡 , 𝑎𝑡 − 𝑅 𝑥𝑡 , 𝑎𝑡

2

Regression error

Will be proven in HW1



Summary

● Contextual bandits (CB) simultaneously generalizes supervised learning (SL) 

and multi-armed bandits (MAB). It captures the challenges of generalization 

and exploration in online RL. 

● Any MAB algorithm based on “mean estimation” can be lifted as a CB 

algorithm with “reward function estimation” by leveraging a regression oracle.   

● This gives a general framework for value-based CB



Multi-Armed Bandits
Based on mean and uncertainty estimation



Recall: MAB Based on Mean Estimation

Mean Estimation Decision Rule
𝑅𝑡(⋅) 𝜋𝑡(⋅)

Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)



MAB Based on Mean and Uncertainty Estimation

Mean & Uncertainty 
Estimation Decision Rule

𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

𝑈𝑡(𝑎):  measures the uncertainty of 𝑅𝑡(𝑎) 

𝑅𝑡 𝑎 − 𝑅(𝑎) ≤
 2log(2/𝛿)

𝑁𝑡(𝑎)
 ≜ 𝑈𝑡(𝑎)

This inequality is used in the 
math analysis of 𝜖-Greedy and 
IGW, but not in their algorithm. 



Useful Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

Image source: UC Berkeley CS188



Another Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

At time 𝑡, suppose that arm 𝑎 has been drawn for 𝑁𝑡 𝑎  times, with empirical 

mean 𝑅𝑡(𝑎).  

What can we say about the true mean 𝑅(𝑎)? 

 𝑅 𝑎 − 𝑅𝑡 𝑎 ≤
2 log 2/𝛿

𝑁𝑡(𝑎)
   w.p. ≥ 1 − 𝛿 

What’s the most optimistic mean estimation for arm 𝑎? 

𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)
 



Upper Confidence Bound (UCB)

For the remaining rounds:  in round 𝑡,  draw

𝑎𝑡 = argmax𝑎 𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)

where 𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1. 

𝑁𝑡(𝑎) is the number of samples of arm 𝑎 up to time 𝑡 − 1. 

UCB  (Parameter: 𝛿)

In the first 𝐴 rounds, draw each arm once. 

P Auer, N Cesa-Bianchi, P Fischer.  Finite-time analysis of the multiarmed bandit problem, 2002. 

Exploration Bonus

Usually decreases over time as 𝛿𝑡 ∼ 1/𝑡 (drives continual exploration)  



Regret Bound of UCB

UCB ensures with high probability, 

Regret ≲ 𝐴𝑇 .

Theorem.  Regret Bound of UCB



Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7] animation

https://bahh723.github.io/rl2025sp_files/ucb-animation.gif


UCB Regret Bound Analysis



UCB Regret Bound Analysis



Summary:  Algorithms We Learned So Far

Regret Bound Approach

Explore-then-Exploit 

𝜖-Greedy

Boltzmann Exploration

Inverse Gap Weighting

𝐴1/3 𝑇2/3

𝐴1/3 𝑇2/3

X

𝐴𝑇

Mean estimation + decision rule

Upper Confidence Bound

Thompson Sampling

Arm Elimination
𝐴𝑇

Mean and uncertain estimation 

+ decision rule



Thompson Sampling – A Bayesian Approach for MAB

Assumptions: 

● At the beginning, the environment draws a parameter 𝜃⋆ from some prior 

distribution 𝜃⋆ ∼ 𝑃prior

● In every round, the reward vector 𝒓𝒕 = (𝑟𝑡 1 , … , 𝑟𝑡(𝐴)) is generated from 

𝒓𝒕 ∼ 𝑃𝜃⋆

E.g., Gaussian Case

● At the beginning, 𝜃⋆(𝑎) ∼ 𝒩(0, 1)  for all 𝑎 ∈ 1, … , 𝐴 . 

● In every round, the reward of arm 𝑎 is generated by 𝑟𝑡 𝑎 ∼ 𝒩(𝜃⋆(𝑎), 1). 

For the learner,  𝑃prior is known;  𝜃⋆ is unknown;   𝑃𝜃 is known for any 𝜃.  



Thompson Sampling

In words: 

Randomly pick an arm according to the probability you believe it is the optimal arm. 

At time 𝑡, after seeing ℋ𝑡 = (𝑎1, 𝑟1 𝑎1 , 𝑎2, 𝑟2 𝑎2 , … , 𝑎𝑡−1, 𝑟𝑡−1 𝑎𝑡−1 ), the learner 

has a posterior distribution for 𝜃⋆: 

In math: 

Sample 𝑎𝑡 according to 𝜋𝑡 𝑎 = 𝜃
𝑃 𝜃 ℋ𝑡 𝕀 𝑎⋆ 𝜃 = 𝑎 = 𝔼𝜃∼𝑃 ⋅| ℋ𝑡

𝕀 𝑎⋆ 𝜃 = 𝑎

Implementation:  Sample 𝜃𝑡 ∼ 𝑃 ⋅ | ℋ𝑡 , and choose 𝑎𝑡 = 𝑎⋆(𝜃𝑡).  

𝑃 𝜃⋆ = 𝜃 ℋ𝑡 =
𝑃 ℋ𝑡 , 𝜃⋆ = 𝜃

𝑃(ℋ𝑡)
=

𝑃𝜃 ℋ𝑡 𝑃prior(𝜃)

𝑃(ℋ𝑡)
∝ 𝑃𝜃 ℋ𝑡 𝑃prior 𝜃

William Thompson. On the likelihood that one unknown 

probability exceeds another in view of the evidence of 

two samples, 1933. 

Also called “Posterior Sampling”



Gaussian Thompson Sampling

Gaussian prior 𝜃⋆(𝑎) ∼ 𝒩(0, 1)  + Gaussian reward 𝑟𝑡 𝑎 ∼ 𝒩(𝜃⋆(𝑎), 1) :  

𝑃 𝜃⋆ 𝑎 = 𝜃 𝑎  ℋ𝑡 = 𝒩 𝑅𝑡 𝑎 ,
1

𝑁𝑡 𝑎 +1
 where 𝑅𝑡 𝑎 =

σ𝑠=1
𝑡−1 𝕀 𝑎𝑡=𝑎 𝑟𝑡(𝑎)

𝑁𝑡 𝑎 +1

Empirical mean assuming 1 fake 

sample with reward 0



TS vs. UCB

𝑅𝑡(𝑎)
≈

1

𝑁𝑡(𝑎)

UCB estimators

UCB:  𝑎𝑡 ≈ argmax𝑎 𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)

Gaussian TS:  𝑎𝑡 ≈ argmax𝑎 𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)
𝑛𝑡(𝑎) with 𝑛𝑡 𝑎 ∼ 𝒩(0,1) 



More on Thompson Sampling

For Bernoulli reward, we assume the Beta prior: 
https://gdmarmerola.github.io//ts-for-bernoulli-bandit/ 

Thompson sampling is empirically strong

Chapelle and Li.  An Empirical Evaluation of Thompson Sampling. 2011.  

Yang. A Study on Multi-Arm Bandit Problem with UCB and Thompson Sampling Algorithm. 2024.  

Wang and Chen.  Thompson Sampling for Combinatorial Semi-Bandits. 2018.

https://gdmarmerola.github.io/ts-for-bernoulli-bandit/
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://www.scitepress.org/Papers/2024/129384/129384.pdf
https://proceedings.mlr.press/v80/wang18a/wang18a-supp.pdf


Extension to Contextual Bandits?

Mean & Uncertainty 
Estimation Decision Rule

𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

● Linear UCB, Linear TS   (using linear regression)

● In UCB or TS or Linear UCB or Linear TS, we really did not perform “uncertainty 

estimation” – the uncertainty measure is directly derived from Hoeffding’s bound or 

prior knowledge about reward distribution. 

● When general function approximation is used, it’s no longer easy to “derive” 

uncertainty measure, so it really needs to be “estimated”.  

● Let’s talk about this more in MDP. 



Summary



The Most Important Slide for Value-Based Bandits 

Regression Decision Rule

𝜖-Greedy Boltzmann IGW

𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎|𝑥)

𝑟𝑅
𝑥

𝑎

Train a 𝑅 such that 𝑟𝑖 ≈ 𝑅(𝑥𝑖 , 𝑎𝑖)



Exploration by Modifying the Reward

● Add exploration bonus (UCB) or perturbation (TS) that scales with the degree 

of uncertainty. 
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