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Contextual Bandits and Non-Contextual Bandits
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Multi-Armed Bandits



Multi-Armed Bandits

A slot machine A row of slot machines

One-armed bandit Multi-armed bandit



Multi-Armed Bandits

Given: armset A ={1, ..., A}
Fortimet=1,2,..,T:
Learner chooses an arm a; € A
Learner observes r; = R(a;) + w;

Arm = Action

Assumption: R(a) is the (hidden) ground-truth reward function

w; IS a zero-mean noise

Goal: maximize the total reward Y.7_, R(a,) (or Xi_i1:)




How to Evaluate an Algorithm’s Performance?

e "My algorithm obtains 0.3T total reward within T rounds”

—

: l
— Is my algorithm good or bad? 5 o Rlo) - _Tgfz' Rles) < I

e Benchmarking the problem ) '

T T T <JT

Regret := maxz R(m) — z R(a,) = maxTR(a)— Z R(a,)
a
. = S t=1 T t=1
Y
The total reward of the best policy In MAB

7

3
e “My algorithm ensures Regret < 5T+
e Regret = 0o(T) = the algorithm is as good as the optimal policy asymptotically



Multi-Armed Bandits

e Key challenge: Exploration

e The other three challenges we will discuss for RL

e Generalization
e Temporal credit assignments
e Distribution mismatch

e We will discuss about two categories of exploration strategies

e Based on mean estimation
e Based on mean and uncertainty estimation



Multi-Armed Bandits

Based on mean estimation



The Exploration and Exploitation Trade-off in MAB

e To perform as well as the best policy (i.e., best arm) asymptotically, the
learner has to pull the best arm most of the time

= need to exploit

e To identify the best arm, the learner has to try every arm sufficiently many
times

= need to explore



A Simple Strategy: Explore-then-Exploit

Explore-then-exploit (Parameter: T,)

In the first T, rounds, sample each arm T, /A times. (Explore)
Compute the empirical mean R(a) for each arm a
In the remaining T — T, rounds, draw @ = argmax, R(a) (Exploit)

What is the right amount of exploration (T,)?




Another Simple Strategy: e-Greedy

Mixing exploration and exploitation in time

e-Greedy (Parameter: €)

In the first 4 rounds, draw each arm once.
In the remaining rounds t > A,

Take action

| uniform(A) with prob. € (Explore)
= argmax, R,(a) withprob. 1—¢€ (Exploit)

2l {ag=a}r

25;1 I{as=a}

where R,(a) = IS the empirical mean of arm a using samples

up totime t — 1.




Comparison

e c-Greedy is more robust to non-stationarity than Explore-then-Exploit
e ¢-Greedy has a better performance in the early phase of the learning process



Quantifying the Estimation Error

In the exploration phase, we obtain N =T,/A i.i.d. samples of each arm.

Key Question:

|R(a) —R(a) [ <? F(V)

/ \ some decreasing function of N

Empirical mean True mean
of N i.i.d. samples



Quantifying the Estimation Error
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Quantifying the Estimation Error

In the exploration phase, we obtain N =T,/A i.i.d. samples of each arm.

Key Question:

|R(a) —R(a) [ <? F(V)

/ \ some decreasing function of N

Empirical mean True mean
of N i.i.d. samples



Quantifying the Estimation Error

In the exploration phase, we obtain N =T,/A i.i.d. samples of each arm.

Key Question:

0.0k
74
With probability at least 1 — §, =°.1%

|R(a) —R(a) | <7? f(IN,6)
/ \ some decreasing function of N

Empirical mean True mean
of N i.i.d. samples



Quantifying the Error: Concentration Inequality

Theorem. Hoeffding’s Inequality

Let X4, ..., Xy be independent g-sub-Gaussian random variables.
Then with probability at least 1 — 6,

N N

1 1

NZXi _NZE[Xi]
=1 =1

2log(2/6)
p :

IA
Q

A random variable is called -sub-Gaussian if E[e?*~EXD] < e4*0°/2 v} e R.
Fact 1. N (u,0?) is o-sub-Gaussian.
Fact 2. Arandom variable € [a, b] is (b — a)-sub-Gaussian.

Intuition: tail probability Pr{|X — E[X]| = z} bounded by that of Gaussians



Quantifying the Estimation Error

log (1/0)
N

With probability at least 1 - 8, | R(a) — R(a) | = 0

\

—— Omit constants

With high probability, ‘ R(a) — R(a) ‘ = 0 1

N J\ N
(/%‘nc.)—/zca) <L \

N

—— Omit constants and log(1/4§) factors



Explore-then-Exploit Regret Bound Analysis

—

In the first T, rounds, sample each arm T, /A times. -
. . QR = agmax R(s) (‘f“e
Compute the empirical mean R(a) for each arm a 5

In the remaining T — T, rounds, draw @ = argmax, R(a)
e —— —

yest o-rnj

Atfw the CK(){o‘Mtlm ]D(MJL , we have @Q)‘Q(“\)l 5 ,\FIIU- _:/\/___g:‘)

Tn the ex?(om{m f)&tasc ,
At ang tis & € explnton plee . R (45) = R(

= E(aij _R(8) + [g(a*)-é\(aﬂ Jr(k\(ft‘)—ﬁ(a)

SO L
/QW ,“6 Co3T 0_‘)6 exip&w-.{m T Z(K(QO“IQ(E'\)) < 7_; _f(T’

€ Second rpm



Regret Bound of Explore-then-Exploit and e-G

reedy

Theorem. Regret Bound of Explore-then-Exploit

Suppose that R(a) € [0,1] and w; is 1-sub-Gaussian.
Then Explore-then-Exploit ensures with high probability,

A
Regret S Ty + T\/T: ~ AY/3T?/3 (choosing T, = A1/3T?/3)
0
Theorem. Regret Bound of e-Greedy (Your Exercise)
Suppose that R(a) € [0,1] and w; is 1-sub-Gaussian.
Then e-Greedy ensures with high probability, 2¢ w@é)

AT
Regret < €T + /? ~ AY/3T?/3 (choosing € = (T

é)1/3)




Can We Do Better?

In explore-then-exploit and e-greedy, the probability to choose arms do not depend
on the estimated mean (except for the empirically best arm).

... Maybe, the probability of choosing arms can be adaptive to the estimated mean?

Solution: Refine the amount of exploration for each arm based on the current
mean estimation.

(Has to do this carefully to avoid under-exploration)



(}t = 7&(&)‘575'9
Refined Exploration @ AN ICE

where |)= ArpmK ﬁt@
b

Boltzmann Exploration (Parameter: A) ){:A = D = < |
In each round, sample a; according to % Ye=( D T zele) 2\
l
e (a) « exp(/l Rt(a)) Ty~ = ——= %

N )\.F\f(a)/( M%(b) A+ AGeap(e)

where R, (a) is the empirical mean of arm a\using samples up to time t — 1.

pa—

‘,h}—~

Inverse Gap Weighting (Parameter: 1) Ve Is @ normalization factor
that makes ), m;(a) =1

1 I, 1
t_/lﬁt(a) )/t’ AGap(a)

where Gap,(a) = max R,(b) — R.(a)

me(a) =
14

),

|~ 1 e Bfy)
i 77

—



Refined Exploration

Variant of Inverse Gap Weighting Easier for Implementation (Parameter: 1)

( 1

if R
A+ 1Gap, (@) If a # argmax R;(a)

mi(a) =
1-— z n¢(a") if a = argmax R, (a)

\ a' #a

where Gap;(a) = max R,(b) — R;(a)




Refined Exploration

e Boltzmann Exploration
e A quite commonly used exploration strategy (like e-greedy)

e However, it's theoretically less desirable. For fixed parameter A > 2log t, there is always
a problem instance making BE suffer ©(T) regret

e There is no known regret bound for it yet (?)

Cesa-Bianchi, Gentile, Lugosi, Neu. Boltzmann Exploration Done Right, 2017.
Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally. 2021.

o A
o JIATS ATY

e Inverse Gap Weighting £
e Less well-known whew A ST

e We can show a near-optimal regret bound VAT for it, improving the AY/3T?/3 by e-greedy

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.



Guarantee of Inverse Gap Weighting

Inverse Gap Weighting ensures with high probability,

T
AlogT

A
Regret < 7 + AlogT =~ /AT logT (choosing A =

D. Foster and A. Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.
See supplementary materials for a formal proof.




Summary:. MAB Based on Mean Estimation

FOF t = 1; 2; ---;T1
Design a distribution m,(-) based on the current mean estimation R, (-)

A €
EG me(a) = (1 — e)]I{a = argmax Rt(-)} + i A1/3T2/3
BE m.(a) < exp(AR:(a)) << Ay noonsiy Cer T XXX
1
IGW 7. (a) = —
t Y AR(a) JAT log T

Sample an arm a; ~ m; and receive the corresponding reward r;.
Refine the mean estimation R, (-) with the new sample (a,, ;).




Summary:. MAB Based on Mean Estimation

(¢ 1)

Mean Estimation

R:()

e ()

Decision Rule

Ty (a)

e-Greedy  Boltzmann IGW

~ €
me(a) = (1 — e)]l{a = argmax Rt(-)} + 1

Pick action a; ~ m;
Receive r;



Summary:. MAB Based on Mean Estimation

e All 3 methods are based on the same mean estimation
e c-Greedy, Boltzmann exploration, Inverse gap weighting

e The key difference is in the decision rule, I.e., the mapping from estimated
means R, to a distribution .

e The shape of the mapping makes differences

e There is a scalar hyperparameter that allows for a tradeoff between
exploration and exploitation (e in EG, A in BE or IGW)



Regret of Methods over Different A

Some Experiments —
BE (A = Zlog(t))
T = 10000 rounds —o— EG (e=t"13)
A =2 arms 200 7 —e— EG (e=t"17/g)
—o— IGW (A=81)
Reward mean R = [0.5,0.5 — A] g 100 .
Bernoulli distribution %
: E
Time-dependent parameters o
30 random seeds
—100 -
Observations:
® Bound from theory COUId be |Oose 0.00 0.05 0.10 0.15 0.20 0.25 0.30

A (Difference in Mean Rewards)

-- theory captures worst-case guarantee

e Most algorithms seem to have its worst
regret at some intermediate A value
-- will be studied in Homework 1



Contextual Bandits

Based on reward function estimation



Multi-Armed Bandits vs. Contextual Bandits

Multi-Armed Bandit

Context —

Contextual Bandit

e.g. the user’s history,
location, social network
activity, ...

4.2

4.2

all-user recommendation

personalized recommendation



Contextual Bandits Generalizes MAB and SL

Multi-Armed Bandit

No input, bandit feedback

Generalization
Exploration

Credit assignment

Input — Contextual Bandit

Input —

Supervised Learning r©

Takes input, bandit feedback

Takes input, full-information feedback

Generalization
Exploration

Credit assignment

4.2
Generalization
> 7 Exploration
Credit assignment
* 92



Contextual Bandits

Fortimet=1,2,..,T:
Environment generates a context x; € X
Learner chooses an action a; € A

Learner observes r; = R(x;, a;) + w;
hD:Se




Discussion

e Contextual bandits is a minimal simultaneous generalization of supervised
learning (SL) and multi-armed bandits (MAB)

e We learned a lot about SL in machine learning courses

e \We just learned some simple MAB algorithms
e 3 strategies based on mean estimation

e Question: Can you design a contextual bandits algorithm based on the
techniques you know for SL and MAB?



Two ways to leverage SL techniques in CB

x. context, a: action, r: reward

Learn a mapping from
(context, action) to reward

CB with regression oracle
Value-based approach
(discussed next)

Learn a mapping from
context to action (or action distribution)

CB with classification oracle
Policy-based approach

(slightly later in the course)



Recall: MAB Based on Mean Estimation

(¢ 1)

Mean Estimation

R:()

e ()

Decision Rule

Ty (a)

e-Greedy  Boltzmann IGW

~ €
me(a) = (1 — e)]l{a = argmax Rt(-)} + 1

Choose a; ~ m;
Receive r;



CB Based on Reward Function Estimation (Regression)

(X¢, Qg 1)
_ R.(:,") o m:(|*) Receive x,
Regression > Decision Rule > Choose a; ~ (- |x;)
Receive r;
A Ty (alx)
* R JJJLL. M h_l_l_l_l_,
a R — T arm
— e-Greedy  Boltzmann IGW
~ ~ ~ €
Train a R such that r; ~ R(x;, a;) me(alx) = (1 — €)l{a = argmax Ry(x,)} + 1

e (alx) « exp(/lﬁt(x, a))

m(alx) = —
(el Ve — AR (x, a)



CB Based on Reward Function Estimation

Instantiate a regression procedure R,
Fort=1,2,..,T,
Receive context x;

Design a distribution 7, (:|x,) based on the estimated reward R, (x;,")
EG m.(alx;) = (1 — €)l{a = argmax R, (x;,")} +§

BE . (alx.) « exp(AR;(x;, a))
1

Ve — ARt(xt: a)

IGW  ms(alx;) =

Sample an action a; ~ m;(: |x;) and receive the corresponding reward r;.

Refine the reward estimator R, (-,-) with the new sample (x,, a;, ).




( 5("“ of CruTZ&'t')

Regret in Contextual Bandits plogs X —> A mOEA

Y |

Tk Joacd] rm’w;; —— 42 /f,(a{x)é o)1)

Fortimet=1,2,..,T:
Environment generates a context x; € X
Learner chooses an action a; € A
Learner observes r; = R(x;, a;) + w;

T T
Regret = 2 R(x;,m*(x;)) — 2 R(x;,a;) Benchmark policy: 7*(x) = argmax R(x,a)
aeA
t=1 t=1



Regret in Contextual Bandits & o5 (X))

/

\

Regret Bound of e-Greedy B . )e
egression error
e-Greedy ensures T ,
AT - Err Err = z (&(xt» a;) — R(xy, at))
Regret < €T + t=1
\ €

Regret Bound of Inverse Gap Weighting
IGW ensures

AT
Regret < 5a + A - Err

Will be proven in HW1



Summary

e Contextual bandits (CB) simultaneously generalizes supervised learning (SL)
and multi-armed bandits (MAB). It captures the challenges of generalization
and exploration in online RL.

e Any MAB algorithm based on “mean estimation” can be lifted as a CB
algorithm with “reward function estimation” by leveraging a regression oracle.

e This gives a general framework for value-based CB



Multi-Armed Bandits

Based on mean and uncertainty estimation



Recall: MAB Based on Mean Estimation

(¢ 1)

Mean Estimation

R:()

Decision Rule

e ()

...

Choose a; ~ m;
Receive r;



MAB Based on Mean and Uncertainty Estimation

(ag,1t)

Mean & Uncertainty | Re(),U:()
Estimation ]

e ()

Decision Rule

U.(a): measures the uncertainty of R,(a)

N _ ZlqM) a
R@ —R@| = 52 2 y,(a)
ey flmg

...

Choose a; ~ m;
Receive r;

This inequality is used in the
math analysis of e-Greedy and
IGW, but not in their algorithm.

befsie bme +



Useful Idea: “Optimism in the Face of Uncertainty”

In words:

Act according to the best plausible world.

AND
Srennc!

ﬂ

>&

oy N
\?
P

Image source: UC Berkeley CS188




Another Idea: “Optimism in the Face of Uncertainty”

In words:

Act according to the best plausible world.

At time t, suppose that arm a has been drawn for N;(a) times, with empirical
mean R,(a).

What can we say about the true mean R(a)?

2 log(2/6)
N¢(a)

wW.p.=1-06

| R(a) — Re()] s\[

What's the most optimistic mean estimation for arm a?

PN 2 log(2/6)
Rt(@"‘\/ N.(@)




Upper Confidence Bound (UCB)

UCB (Parameter: §) Usually decreases over time adrives continual explpration)

l
In the first A rounds, draw each arm once. /*

For the remaining rounds: in round ¢, draw Exploration Bonus

2log(2/6)
Ni(a)

a, = argmax, R,(a)l+

where R,(a) is the empirical mean of arm a using samples up to time t — 1.
N;(a) Is the number of samples of arm a up to time t — 1.

P Auer, N Cesa-Bianchi, P Fischer. Finite-time analysis of the multiarmed bandit problem, 2002.



Regret Bound of UCB

Theorem. Regret Bound of UCB
UCB ensures with high probability,

Regret < VAT .




Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7] animation



https://bahh723.github.io/rl2025sp_files/ucb-animation.gif

UCB Regret Bound Analysis



UCB Regret Bound Analysis



Summary: Algorithms We Learned So Far

Regret Bound Approach
Explore-then-Exploit AY/3 T2/3
e-Greedy AY/3 T2/3 L .
. Mean estimation + decision rule
Boltzmann Exploration X
Inverse Gap Weighting VAT
Upper Confidence Bound . L

Mean and uncertain estimation

VAT

+ decision rule




Thompson Sampling — A Bayesian Approach for MAB

Assumptions:

e At the beginning, the environment draws a parameter 8* from some prior
distribution 6* ~ P

prior

e In every round, the reward vector r; = (1:(1), ..., 7:(A)) is generated from
T't ~ PQ*

E.g., Gaussian Case
e At the beginning, 6*(a) ~ N (0,1) foralla € {1, ...,A}.
e |In every round, the reward of arm a is generated by r;.(a) ~ N (60*(a), 1).

For the learner, Ppyor is known; 6* is unknown; Py is known for any 6.



William Thompson. On the likelihood that one unknown

Th om pSO N Sam p | | N g probability exceeds another in view of the evidence of

two samples, 1933.

In words:
Randomly pick an arm according to the probability you believe it is the optimal arm.

At time t, after seeing H; = (a,11(aq),a,,r(a,), ..., as_1,1:—1(as—1)), the learner
has a posterior distribution for 6*:
P(}[t,g* = 9) _ PH(}[t)Pprior(H)

P(}[t) P(}[t) X Py (}[t)Pprior(H)

P(6* = 0|H,) =

In math:
Sample a, according to mr.(a) = J, P(0|H) I{a*(0) = a} = Egp(| 3, [1{a*(0) = a}]

Implementation: Sample 8, ~ P(- | #;), and choose a; = a*(6,).

Also called “Posterior Sampling”




Gaussian Thompson Sampling

Gaussian prior 6*(a) ~ N(0,1) + Gaussian reward r;(a) ~ N(6*(a),1) :

* ~ 1 ~ g;lﬂ —
P(0*(@) = 0(@) 136) = W (Re(@), ;) where R(a) = ELlcaln(@

!

Empirical mean assuming 1 fake
sample with reward O



TS vs. UCB

A

! O O > K
R.(a) R

Q

Ni(a)

UCB estimators

UCB: a; = argmax, R;(a) + ¢ (D)

Gaussian TS: a; ~ argmax, R,;(a) +c /%@ n:(a) with n;(a) ~ NV (0,1)
t



More on Thompson Sampling

For Bernoulli reward, we assume the Beta prior:
https://gdmarmerola.qithub.io//ts-for-bernoulli-bandit/

Thompson sampling is empirically strong

Chapelle and Li. An Empirical Evaluation of Thompson Sampling. 2011.

Yang. A Study on Multi-Arm Bandit Problem with UCB and Thompson Sampling Algorithm. 2024.
Wang and Chen. Thompson Sampling for Combinatorial Semi-Bandits. 2018.



https://gdmarmerola.github.io/ts-for-bernoulli-bandit/
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://www.scitepress.org/Papers/2024/129384/129384.pdf
https://proceedings.mlr.press/v80/wang18a/wang18a-supp.pdf

Extension to Contextual Bandits?

(as, 1t)

Mean & Uncertainty | R, U:0). () Choose a, ~ 7,

Estimation Decision Rule " Receive T4

Linear UCB, Linear TS (using linear regression)

In UCB or TS or Linear UCB or Linear TS, we really did not perform “uncertainty
estimation” — the uncertainty measure is directly derived from Hoeffding's bound or
prior knowledge about reward distribution.

When general function approximation is used, it's no longer easy to “derive”
uncertainty measure, so it really needs to be “estimated”.

Let’s talk about this more in MDP.



Summary



The Most Important Slide for Value-Based Bandits

(X¢, g, 7¢)

Re()

Regression
X — N
R +—r
a —

Train a R such that r; = R(x;, a;)

Decision Rule

e (- | -)

Ty (alx)

e-Greedy  Boltzmann

Lusss. e, 1.

IGW

arm

Receive x;

> Choose a; ~ (- |x;)

Receive r;



Exploration by Modifying the Reward

e Add exploration bonus (UCB) or perturbation (TS) that scales with the degree
of uncertainty.
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