### **Review: Bandit Techniques**



#### Are we done with bandits?

- Almost, but we have a last important topic: how to deal with continuous action sets? (#actions could be infinite)
- We will go over the 4 regimes once again to deal with continuous actions



# **Dealing with Continuous Action Set**



### **Continuous Action Set**

Full-information feedback

```
Given: Action set \Omega \subseteq \mathbb{R}^d
```

```
For time t = 1, 2, ..., T:
```

```
Learner chooses a point a_t \in \Omega
```

Environment reveals a reward function  $r_t: \Omega \to \mathbb{R}$ 

Bandit feedback

**Given:** Action set  $\Omega \subseteq \mathbb{R}^d$ 

For time t = 1, 2, ..., T:

Learner chooses a point  $a_t \in \Omega$ 

Environment reveals a reward value  $r_t(a_t)$ 

# **Continuous Multi-Armed Bandits**

With a mean estimator



#### Value-Based Approach (mean estimation)

• Use supervised learning to learn a reward function  $R_{\phi}(a)$ 

- How to perform the exploration strategies (like  $\epsilon$ -Greedy)?
  - How to find  $\operatorname{argmax}_{a} R_{\phi}(a)$ ?
  - Usually, there needs to be another **policy learning procedure** that helps to find  $\operatorname{argmax}_{a} R_{\phi}(a)$
  - Then we can explore as  $a_t = \operatorname{argmax}_a R_{\phi}(a) + \mathcal{N}(0, \sigma^2 I)$

### **Full-Information Policy learning Procedure**

#### **Gradient Ascent**

For t = 1, 2, ..., T: Choose action  $\mu_t$ Receive reward function  $r_t: \Omega \to \mathbb{R}$ Update action  $\mu_{t+1} \leftarrow \mathcal{P}_{\Omega}(\mu_t + \eta \nabla r_t(\mu_t))$ 

When  $\pi_{\theta} = \mathcal{N}(\mu_{\theta}, \sigma^2 I)$ , the KL-regularized policy update

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \left\{ \int \left( \pi_{\theta}(a) - \pi_{\theta_{t}}(a) \right) r_{t}(a) \, \mathrm{d}a - \frac{1}{\eta} \, \mathrm{KL}(\pi_{\theta}, \pi_{\theta_{t}}) \right\}$$

is close to  $\mu_{\theta_{t+1}} \leftarrow \mu_{\theta_t} + \eta \sigma \nabla r_t(\mu_{\theta_t})$ 

#### **Regret Bound of Gradient Ascent**

**Theorem.** If  $\Omega$  is convex and all reward functions  $r_t$  are concave, then Gradient Ascent ensures

$$\text{Regret} = \max_{\mu^{\star} \in \Omega} \sum_{t=1}^{T} r_t(\mu^{\star}) - r_t(\mu_t) \le \frac{\max_{\mu \in \Omega} \|\mu\|_2^2}{\eta} + \eta \sum_{t=1}^{T} \|\nabla r_t\|_2^2$$

This can also be applied to the finite-action setting, but only ensures a  $\sqrt{AT}$  regret bound (using exponential weights we get  $\sqrt{(\log A)T}$ )

## **Combining with Mean Estimator**

$$\overline{ \begin{array}{c} \chi(a) = N(\mathcal{U}_{t}, \sigma^{2}I) \\ t \end{array} }$$

The mean estimator  $R_{\phi}$  essentially gives us a full-information reward function

For t = 1, 2, ..., T: Take action  $a_t = \mathcal{P}_{\Omega}(\mu_t + \mathcal{N}(0, \sigma^2 I))$ Receive  $r_t(a_t)$ Update the mean estimator:  $\phi \leftarrow \phi - \lambda \nabla_{\phi} \left[ \left( R_{\phi}(a_t) - r_t(a_t) \right)^2 \right] \qquad a \longrightarrow \phi \longrightarrow R_{\phi}(a)$ Update policy:  $\mu_{t+1} = \mathcal{P}_{\Omega}(\mu_t + \eta \nabla_{\mu} R_{\phi}(\mu_t))$ 

Think of this as a continuous-action counterpart of  $\epsilon$ -Greedy

# **Continuous Contextual Bandits**

#### With a regression oracle



#### **Combining with Regression Oracle** (a bandit version of DDPG)



# **Continuous Multi-Armed Bandits**

Pure policy-based algorithms



#### **Pure Policy-Based Approach**

#### **Gradient Ascent**

For t = 1, 2, ..., T: Choose action  $\mu_t$ Receive reward function  $r_t: \Omega \to \mathbb{R}$   $f_t(\Lambda_t)$ Update action  $\mu_{t+1} \leftarrow \mathcal{P}_{\Omega}(\mu_t + \eta \nabla r_t(\mu_t))$ We face a similar problem as in EXP3: if we only observe  $r_t(a_t)$ , how can we estimate the **gradient**?

#### (Nearly) Unbiased Gradient Estimator

**Goal:** construct  $g_t \in \mathbb{R}^d$  such that  $\mathbb{E}[g_t] \approx \nabla r_t(\mu_t)$  with only  $r_t(a_t)$  feedback



### (Nearly) Unbiased Gradient Estimator (1/3)

Uniformly randomly choose a direction  $i_t \in \{1, 2, ..., d\}$ Uniformly randomly choose  $\beta_t \in \{1, -1\}$ Sample  $a_t = \mu_t + \delta \beta_t e_{i_t}$ Observe  $r_t(a_t)$ Define  $g_t = \frac{dr_t(a_t)}{\delta} \beta_t e_{i_t}$  or  $g_t = \frac{d(r_t(a_t) - b_t)}{\delta} \beta_t e_{i_t}$ 

My + S(32 e; Try \* My \*

 $e_i = \left( \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \in i \text{-th}$ 

#### (Nearly) Unbiased Gradient Estimator (2/3)





$$b = 0 \begin{cases} w.p.\frac{i}{2} = 0 & \frac{-6}{5} \\ w.p.\frac{i}{2} = 0 & \frac{-6}{5} \\ w.p.\frac{i}{2} = 0 & \frac{-6}{5} \\ \frac{0}{5} & \frac{1}{5} = 0 & \frac{-1}{5} \\ \frac{0}{5} & \frac{1}{5} = 0 & \frac{+1}{5} \end{cases}$$

#### (Nearly) Unbiased Gradient Estimator (3/3)

Choose 
$$z_t \sim \mathcal{D}$$
 with  $\mathbb{E}_{z \sim \mathcal{D}}[z] = 0$   
Sample  $a_t = \mu_t + z_t$   
Observe  $r_t(a_t)$   
Define  $g_t = (r_t(a_t) - b_t)H_t^{-1}z_t$  where  $H_t := \mathbb{E}_{z \sim \mathcal{D}}[zz^T]$   
 $Assuming [t_t(\alpha) = c + \alpha^T v_t]$  we will show  $\mathbb{E}[\mathcal{J}_t] = V_t$   $\mathbb{E}[H_t^{-1}z_t(c-b_t)] = 0$   
 $\mathbb{E}[\mathcal{J}_t] = \mathbb{E}[(h_t^{-1}z_t(b_t) - b_t)H_t^{-1}z_t] = \mathbb{E}[H_t^{-1}z_t(\alpha_t^T v_t + c - b_t)] = \mathbb{E}[H_t^{-1}z_t(\alpha_t^T v_t)]$   
 $= \mathbb{E}[(H_t^{-1}z_t(b_t) - b_t)H_t^{-1}z_t] = \mathbb{E}[(H_t^{-1}z_t - b_t)] = \mathbb{E}[(H_t^{-1}z_t -$ 

Arbitrarily initialize  $\mu_1 \in \Omega$ For t = 1, 2, ..., T: Let  $a_t = \prod_{\Omega} (\mu_t + z_t)$  where  $z_t \sim \mathcal{D}$  (assume that  $||z_t|| \leq \delta$  always holds) Receive  $r_t(a_t)$ Define  $g_t = (r_t(a_t) - b_t)H_t^{-1}z_t$  where  $H_t \coloneqq \mathbb{E}_{z \sim \mathcal{D}}[zz^{\top}]$ Update policy:  $\mu_{t+1} = \prod_{\Omega} \left( \mu_t + \eta g_t \right)$ 

#### **Regret Bound of Gradient Ascent with Gradient Estimator**

**Theorem.** If  $\Omega$  is convex and all reward functions  $r_t$  are concave, then Gradient Ascent with Gradient estimator ensures  $\operatorname{Regret} = \max_{\mu^{\star} \in \Omega} \left[ \sum_{t=1}^{T} r_t(\mu^{\star}) - r_t(\mu_t) \right] \leq \frac{\max_{\mu \in \Omega} \|\mu\|_2^2}{n} + \eta \sum_{t=1}^{T} \|g_t\|_2^2 + \sum_{t=1}^{T} \operatorname{bias}_t$ 

 $\operatorname{Regret} = \max_{\mu^* \in \Omega} \mathbb{E} \left[ \sum_{t=1}^T r_t(\mu^*) - r_t(\mu_t) \right] \leq \frac{\max_{\mu \in \Omega} \|\mu\|_2^2}{\eta} + \eta \sum_{t=1}^T \|g_t\|_2^2 + \sum_{t=1}^T \operatorname{bias}_t$ 

Decrease with  $\delta$  Increase with  $\delta$ 

# **Continuous Contextual Bandits**

Pure policy-based algorithms



For 
$$t = 1, 2, ..., T$$
:  
Receive context  $x_t$   
Let  $a_t = \mu_{\theta_t}(x_t) + z_t$  where  $z_t \sim D$   
Receive  $r_t(x_t, a_t)$   
Define  
 $g_t = (r_t(x_t, a_t) - b_t(x_t))H_t + z_t$  where  $H_t := \mathbb{E}_{z \sim D}[zz^T]$   
Recall:  $g_t$  is an estimator for  $\nabla_{\mu}r_t(x_t, \mu)|_{\mu=\mu_{\theta_t}(x_t)}$   
Update policy:  
 $\theta_{t+1} \leftarrow \theta_t + \eta$  [an estimator of  $\nabla_{\theta}r_t(x_t, \mu_{\theta}(x_t))$  at  $\theta = \theta_t$ ]



For 
$$t = 1, 2, ..., T$$
:  
Receive context  $x_t$   
Let  $a_t = \mu_{\theta_t}(x_t) + z_t$  where  $z_t \sim D$   
Receive  $r_t(x_t, a_t)$   
Define  
 $g_t = (r_t(x_t, a_t) - b_t(x_t))H_t^{-1}z_t$  where  $H_t := \mathbb{E}_{z \sim D}[zz^T]$   
Recall:  $g_t$  is an estimator for  $\nabla_{\mu} r_t(x_t, \mu)|_{\mu=\mu_{\theta_t}(x_t)} \approx \mathcal{M}_{\theta}(x_t) \frac{f(X_t, \mathcal{M}_{\theta}(x_t))}{\Im t} + cost$ .  
Update policy:  
 $\theta_{t+1} \leftarrow \theta_t + \eta \nabla_{\theta} \langle \mu_{\theta}(x_t), g_t \rangle|_{\theta=\theta_t}$   
 $c.f.$  finite action case  
 $\nabla_{\theta} \langle \pi_{\theta}(\cdot |x_t), \hat{r}_t \rangle|_{\theta=\theta_t}$ 

An alternative expression:

When  $\mathcal{D} = \mathcal{N}(0, H_t)$ , we have

$$\nabla_{\theta} \langle \mu_{\theta}(x_t), g_t \rangle = \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) (r_t(x_t, a_t) - b_t(x_t))$$

 $g_t = (r_t(x_t, a_t) - b_t(x_t))H_t^{-1}z_t$  $H_t = \mathbb{E}_{z \sim \mathcal{D}}[zz^{\top}]$  $a_t = \mu_{\theta}(x_t) + z_t$ 

$$\pi_{\theta}(\cdot | x_t) = \mathcal{N}(\mu_{\theta}(x_t), H_t)$$
  
$$\pi_{\theta}(a | x_t) = \frac{1}{(2\pi)^{\frac{d}{2}} \det(H_t)^{\frac{1}{2}}} e^{-\frac{1}{2}(a - \mu_{\theta}(x_t))^{\mathsf{T}} H_t^{-1}(a - \mu_{\theta}(x_t))}$$

 $\nabla_{\theta} \log \pi_{\theta}(a_t | x_t)(r_t(x_t, a_t) - b_t(x_t))$  is a general and direct way to construct gradient estimator in the parameter space.

$$V(\theta) = \int \pi_{\theta}(a|x_t) r_t(x_t, a) da$$
  

$$\nabla_{\theta} V(\theta) = \int \nabla_{\theta} \pi_{\theta}(a|x_t) r_t(x_t, a) da = \int \pi_{\theta}(a|x_t) \frac{\nabla_{\theta} \pi_{\theta}(a|x_t)}{\pi_{\theta}(a|x_t)} r_t(x_t, a) da$$

Unbiased estimator for  $\nabla_{\theta} V(\theta)$ : Sample  $a_t \sim \pi_{\theta}(\cdot | x_t)$  and define estimator  $= \frac{\nabla_{\theta} \pi_{\theta}(a_t | x_t)}{\pi_{\theta}(a_t | x_t)} r_t(x_t, a_t) = \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) r_t(x_t, a_t)$ 

#### *c*.*f*. The other approach:

Create  $g_t$  as a gradient estimator in the action space (by sampling around mean action  $\mu_{\theta}$ ) Then construct gradient estimator in the parameter space as  $\nabla_{\theta} \langle \mu_{\theta}, g_t \rangle$ 

For 
$$t = 1, 2, ..., T$$
:  
Receive context  $x_t$   
Let  $a_t \sim \pi_{\theta_t}(\cdot | x_t)$   
Receive  $r_t(x_t, a_t)$   
Update policy:  
 $\theta_{t+1} \leftarrow \theta_t + \eta \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) (r_t(x_t, a_t) - b_t(x_t))$ 

 $\theta = \theta_{t}$ 

#### PPO

PPO update

$$\begin{aligned} \theta_{t+1} \leftarrow \operatorname*{argmax}_{\theta} \left\{ &\frac{\pi_{\theta}(a_t | x_t)}{\pi_{\theta_t}(a_t | x_t)} (r_t(x_t, a_t) - b_t(x_t)) - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}(\cdot | x_t), \pi_{\theta_t}(\cdot | x_t)) \right\} \\ &\approx \operatorname{argmax}_{\theta} \left\{ &\langle \mu_{\theta}(x_t), g_t \rangle - \frac{1}{2\eta\sigma^2} \left\| \mu_{\theta}(x_t) - \mu_{\theta_t}(x_t) \right\|^2 \right\} \end{aligned}$$

 $\mathcal{X}_{t}(\cdot | \chi_{t}) = \mathcal{N}\left(\mathcal{U}_{0}(\chi_{t})\right)\left(\underbrace{\sigma^{2} I}_{-}\right)$ 

c.f. PG update

$$\begin{split} \theta_{t+1} &\leftarrow \theta_t + \eta \, \nabla_{\theta} \! \log \pi_{\theta}(a_t | x_t) \left( r_t(x_t, a_t) - b_t(x_t) \right) \Big|_{\theta = \theta_t} \\ &\approx \operatorname{argmax}_{\theta} \left\{ \langle \mu_{\theta}(x_t), g_t \rangle - \frac{1}{2\eta} \| \theta - \theta_t \|^2 \right\} \end{split}$$

# **Summary for Bandits**

3 main challenges in online RL: Exploration, Generalization, (Temporal) Credit Assignment



#### + Generalization over actions