
Exploration in MDPs
Chen-Yu Wei

We have addressed all 3 main challenges in online RL

Exploration

Generalization

Credit

Assignment

EG

BE

IGW

UCB

TS

Data + Function approximation

VI

PI

We have addressed all 3 main challenges in online RL

𝐻

r=1r=0

Suppose we perform DQN with 𝜖-greedy with random initialization

⇒ On average, we need 2𝐻 episodes to see the reward

(before that, we won’t make any meaningful update and will just do random walk around

state 0)

Environment:

● Fixed-horizon MDP with episode length 𝐻

● Initial state at 0

● A single rewarding state at state 𝐻

● Actions: Go LEFT or RIGHT

(?)

0.1

Regret Analysis for MDPs?

● We have done regret analysis for several bandit algorithms:

● Regression oracle + (𝜖-greedy or inverse gap weighting)

● UCB

● EXP3

● We did not really establish regret bounds for MDPs

● Partially – DQN under 2 assumptions: the data in replay buffer is exploratory and

Bellman completeness

● Not for policy-iteration-based algorithms

Regret Analysis for MDPs?

𝔼𝑠∼𝜌 𝑉𝜋⋆
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎) = ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠, 𝑎 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋(𝑠)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄⋆(𝑠, 𝑎) = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠, 𝑎 𝑉⋆ 𝑠 − 𝑄⋆(𝑠, 𝑎)

For VI-based algorithm (approximating 𝑄⋆)

Approximating 𝑄⋆(𝑠, 𝑎) requires the replay buffer to cover wide range of state-actions.

For PI-based algorithm (approximating 𝑄𝜋)

Approximating 𝑄𝜋(𝑠, 𝑎) only requires state-actions generated from current policy

But…

Regret Analysis for MDPs?

𝐻

r=1r=0

෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠, 𝑎 𝑉⋆ 𝑠 − 𝑄⋆(𝑠, 𝑎)

෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠, 𝑎 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋(𝑠)

PI-based algorithm only tries to make σ𝑠,𝑎 𝑑𝜌
𝜋𝑘 𝑠, 𝑎 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋(𝑠) small.

It can only quickly find optimal policy when 𝑑𝜌
𝜋𝑘 ≈ 𝑑𝜌

𝜋⋆

Insufficiency of algorithms we have discussed for MDPs

● Lack of exploration over the state space (we need deep exploration)

● This issue is particularly critical if

● Local reward does not provide any information

● Local reward provide misleading information

𝐻

r=1r=00.1

● Solution

● Try to make the data (i.e., state-action) distribution close to 𝑑𝜋⋆

● Try to visit as many states as possible

Exploration Bonus (Optimism Principle)

● We have discussed this idea for action exploration – UCB.

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)

Upper Confidence Bound

෠𝑅𝑡 𝑎 = the empirical mean of arm 𝑎 up to time 𝑡 − 1.

𝑁𝑡(𝑎) = the number of times we draw arm 𝑎 up to time 𝑡 − 1.

Exploration Bonus (Optimism Principle)

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)

Exploration Bonus for MDPs

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝐻
2 log (2/𝛿)

𝑁𝑡 𝑠, 𝑎
 ∀𝑠, 𝑎

UCB Value Iteration (UCBVI)

For episode 1, 2, … , 𝑇:

For step 𝐻, 𝐻 − 1, … , 1:

෨𝑄𝐻+1 𝑠, 𝑎 = 0 ∀𝑠, 𝑎

For step 1, 2, … , 𝐻:

Take action 𝑎ℎ = argmax𝑎 ෨𝑄ℎ(𝑠ℎ, 𝑎)

Receive 𝑟ℎ = 𝑅 𝑠ℎ, 𝑎ℎ + noise, 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ , 𝑎ℎ)

Receive 𝑠1 ∼ 𝜌

Exploration Bonus for MDPs

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝐻
2log (2/𝛿)

𝑁𝑡 𝑠, 𝑎
 ∀𝑠, 𝑎

Exploration Bonus for MDPs

UCBVI ensures with high probability,

Regret = ෍

𝑡=1

𝑇

𝑉⋆ 𝑠𝑡,1 − 𝑉𝜋𝑡(𝑠𝑡,1) ≲ 𝐻 𝑆𝐴𝑇.

Theorem. Regret Bound of UCBVI

Azar, Osband, Munos. Minimax Regret Bounds for Reinforcement Learning. 2017.

Improving the required number of

episodes from 2𝐻 to poly(𝐻)

Jaksch, Ortner, Auer. Near-Optimal Regret Bounds for Reinforcement Learning. 2010.

Thompson Sampling

෠𝑅𝑡(𝑎)

≈
1

𝑁𝑡(𝑎)

UCB estimators

UCB: 𝑎𝑡 ≈ argmax𝑎 ෠𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)

TS: 𝑎𝑡 ≈ argmax𝑎 ෠𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)
𝑛𝑡(𝑎) with 𝑛𝑡 𝑎 ∼ 𝒩(0,1)

𝑃 𝜃(𝑎) ℋ𝑡 = 𝒩 ෠𝑅𝑡 𝑎 ,
1

𝑁𝑡 𝑎

Bayesian interpretation:

Assume the reward mean (𝜃(1), … , 𝜃(𝐴)) is drawn

from a Gaussian distribution (prior distribution).

Then the posterior distribution is

(Posterior Sampling)

Randomized Exploration for MDPs

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝐻
2 log 2/𝛿

𝑁𝑡 𝑠, 𝑎
𝑛𝑡(𝑠, 𝑎)

Randomized Value Iteration

For episode 1, 2, … , 𝑇:

For step 𝐻, 𝐻 − 1, … , 1:

෨𝑄𝐻+1 𝑠, 𝑎 = 0 ∀𝑠, 𝑎

For step 1, 2, … , 𝐻:

Take action 𝑎ℎ = argmax𝑎 ෨𝑄ℎ(𝑠ℎ, 𝑎)

Receive 𝑟ℎ = 𝑅 𝑠ℎ, 𝑎ℎ + noise, 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ , 𝑎ℎ)

Receive 𝑠1 ∼ 𝜌 ∼ 𝒩(0,1)

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.

Randomized Exploration for MDPs

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.

Common Approaches of Exploration

● Optimistic Exploration

● Upper Confidence Bound

● Randomized Exploration

● Thompson Sampling (Posterior Sampling)

● Information-Directed Exploration

Information-Directed Exploration (1/3)

Another Bayesian approach – like Thompson sampling.

Assume the parameter of the world (e.g., the mean reward of the arms) is

drawn as 𝜃 ∼ 𝑃prior

After observing history ℋ𝑡 = (𝑎1, 𝑟1, 𝑎2, 𝑟2, … , 𝑎𝑡−1, 𝑟𝑡−1), we can calculate

the posterior distribution of 𝜃:

𝑃 𝜃 ℋ𝑡 =
𝑃(ℋ𝑡 , 𝜃)

𝑃(ℋ𝑡)
=

𝑃 ℋ𝑡|𝜃 𝑃prior(𝜃)

𝑃(ℋ𝑡)
∝ 𝑃 ℋ𝑡|𝜃 𝑃prior(𝜃)

Key question: Based on the posterior estimation of the world 𝑃 𝜃 ℋ𝑡 ,

what action should we pick next?

Information-Directed Exploration (2/3)

Thompson Sampling: Sample 𝜃𝑡 ∼ 𝑃 ⋅ ℋ𝑡 and choose 𝑎𝑡 = 𝑎⋆ 𝜃𝑡 = argmax
𝑎

 𝜃𝑡(𝑎)

The optimal action

in the world of 𝜃𝑡

Information-directed Sampling: Select an arm that tradeoffs regret and information gain

Regret𝜃 𝜋 = max
𝑎⋆

 𝜃 𝑎⋆ − 𝜃(𝜋)

InfoGain𝜃 𝜋 = 𝔼𝑟∼𝜃(𝜋) KL 𝑃 ⋅ ℋ𝑡 , 𝜋, 𝑟 , 𝑃(⋅ |ℋ𝑡) How much will the posterior change after

obtaining a new sample from 𝜋?

Execute 𝜋 = argmin
𝜋

 𝔼𝜃∼𝑃(⋅|ℋ𝑡) Regret𝜃 𝜋 − 𝜆 InfoGain𝜃 𝜋

𝜋 𝑎 = argmax
𝜋

 𝔼𝜃∼𝑃(⋅|ℋ𝑡) 𝕀 𝑎⋆ 𝜃 = 𝑎Equivalently, execute

Russo and Van Roy. Learning to Optimize via Information-Directed Sampling. 2014.

Foster et al. The Statistical Complexity of Interactive Decision Making. 2021.

Information-Directed Exploration (3/3)

When is information-directed exploration better than optimistic / posterior exploration?

Suppose we know there are two possible worlds, where the three arms follow

Bernoulli 0.5 , Bernoulli 0.6 , 0.4 or Bernoulli 0.6 , Bernoulli 0.5 , 0.4

⇒ Although we know arm 3 is definitely not the best arm, we still want to

sample it (once), so we can easily tell which world we’re in.

arm 1

arm 2

arm 3

Exploration in Large State Spaces

with Function Approximation

UCB / TS with Given State-Action Features

Suppose for any (𝑠, 𝑎), we have access to a feature vector 𝜙 𝑠, 𝑎 ∈ ℝ𝑑.

Then instead of counting the #visits to every state-action, we can evaluate the

novelty of the feature.

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝑐 ⋅ 𝜙 𝑠, 𝑎 Λ𝑡
−1𝜙(𝑠, 𝑎)

Λ𝑡 = ෍

𝑖<𝑡

෍

ℎ=1

𝐻

𝜙 𝑠𝑖ℎ, 𝑎𝑖ℎ 𝜙 𝑠𝑖ℎ, 𝑎𝑖ℎ
⊤

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝑐 ⋅ 𝒩(0, 𝜙 𝑠, 𝑎 Λ𝑡
−1𝜙(𝑠, 𝑎))

LSVI-UCB

RLSVI

Jin et al. Provably efficient reinforcement learning with linear function approximation. 2019.

Zanette et al. Frequentist Regret Bounds for Randomized Least-Squares Value Iteration. 2019.

How to Adapt These Ideas to General Cases?

Ideas from UCB:

1. ෨𝑅 𝑠, 𝑎 = ෠𝑅 𝑠, 𝑎 +
1

𝑁(𝑠,𝑎)
where 𝑁(𝑠, 𝑎) ≈ Amount of prior visit to (𝑠, 𝑎)

2. ෨𝑅 𝑠, 𝑎 = ෠𝑅 𝑠, 𝑎 + 𝑒(𝑠, 𝑎) 𝑒(𝑠, 𝑎) ≈ Prediction error on ෠𝑅(𝑠, 𝑎) and ෠𝑃(⋅ |𝑠, 𝑎) where

Ideas from TS:

3. ෨𝑅 𝑠, 𝑎 = ෠𝑅 𝑠, 𝑎 +

After all these, just perform standard RL algorithm over ෨𝑅.

or
1

𝑁(𝑠,𝑎)
 (theoretically better for deterministic environment)

Ideas from Information-directed Sampling:

4. ෨𝑅 𝑠, 𝑎 = ෠𝑅 𝑠, 𝑎 + 𝜆 KL 𝒫 ⋅ ℋ𝑡, 𝑠, 𝑎, 𝑠′ , 𝒫 ⋅ ℋ𝑡

Information gain

noise whose variance scales with the uncertainty of ෠𝑅(𝑠, 𝑎) and ෠𝑃(⋅ |𝑠, 𝑎)

1. Bonus from the Number of Prior Visits

Pseudo Count

Bellemare et al. Unifying Count-Based Exploration and Intrinsic Motivation. 2016 (Source: Sergey Levine’s Deep RL)

Pseudo Count

Bellemare et al. Unifying Count-Based Exploration and Intrinsic Motivation. 2016 (Source: Sergey Levine’s Deep RL)

Pseudo Count

Bellemare et al. Unifying Count-Based Exploration and Intrinsic Motivation. 2016 (Source: Sergey Levine’s Deep RL)

Hash

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. 2017.

Hash

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. 2017.

Hash

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. 2017.

2. Bonus from Prediction Error

Bonus from Prediction Error

Ideally, we would like to estimate ෠𝑃 ⋅ 𝑠, 𝑎 − 𝑃(⋅ |𝑠, 𝑎) and set it as bonus.

However, we don’t know the ground-truth transition, so the best we can do is try

to predict the next state.

There are some issues if we naively do this:

1. For stochastic environments where transitions are random, we will never have small

prediction error for next state.

2. For many environments, some part of the state is uncontrollable by the learner

(e.g., movement of the clouds in the background).

Intrinsic Curiosity Module

Pathak et al. Curiosity-driven Exploration by Self-supervised Prediction. 2017.

Task 1: Given 𝑠𝑡 and 𝑠𝑡+1, predict 𝑎𝑡: make the feature 𝜙 capture action-related dynamics

Task 2: Given 𝜙(𝑠𝑡) and 𝑎𝑡, predict 𝜙(𝑠𝑡+1)

Random Network Distillation

Burda et al. Exploration by Random Network Distillation. 2018.

Random Network Distillation

Burda et al. Exploration by Random Network Distillation. 2018.

3. Thompson Sampling

Recall: Randomized Value Iteration

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝐻
2 log 2/𝛿

𝑁𝑡 𝑠, 𝑎
𝑛𝑡(𝑠, 𝑎)

Randomized Value Iteration

For episode 1, 2, … , 𝑇:

For step 𝐻, 𝐻 − 1, … , 1:

෨𝑄𝐻+1 𝑠, 𝑎 = 0 ∀𝑠, 𝑎

For step 1, 2, … , 𝐻:

Take action 𝑎ℎ = argmax𝑎 ෨𝑄ℎ(𝑠ℎ, 𝑎)

Receive 𝑟ℎ = 𝑅 𝑠ℎ, 𝑎ℎ + noise, 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ , 𝑎ℎ)

Receive 𝑠1 ∼ 𝜌 ∼ 𝒩(0,1)

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.

Recall: Randomized Value Iteration

෨𝑄ℎ 𝑠, 𝑎 ≜ ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄ℎ+1 𝑠′, 𝑎′ + 𝑛𝑡(𝑠, 𝑎)

𝜃 = argmin
𝜃

 ෍

𝑠,𝑎,𝑟,𝑠′ ∈ℬ

𝑟 + max
𝑎′

 𝑄ഥ𝜃 𝑠′, 𝑎′ + 𝑛𝑡(𝑠, 𝑎) − 𝑄𝜃 𝑠, 𝑎
2

Adapting this idea to DQN:

Notice that difference noise gives different 𝜃.

Θ = Space of 𝜃’s
In each episode, sample a 𝜃 ∈ Θ with the distribution following (*),

and execute 𝜋 𝑠 = argmax
𝑎

 𝑄𝜃(𝑠, 𝑎)

(*)

Direct generalization from Randomized VI (not easy to implement)

Bootstrapped DQN

Randomly initialize 𝐾 instances of DQN 𝜃1, … , 𝜃𝐾

(each 𝜃𝑖 has their own target network ҧ𝜃𝑖 and replay buffer ℬ𝑖).

Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

For each episode:

Randomly sample 𝑖 ∼ Unif 1,2, … , 𝐾

Execute 𝜋 𝑠 = max
𝑎

 𝑄𝜃𝑖
(𝑠, 𝑎) in the whole episode.

Randomly place the obtained (𝑠, 𝑎, 𝑟, 𝑠′) in some/all replay buffers.

Update all DQN parameters.

Bootstrapped DQN
Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

Some intuitions:

● The random initialization makes 𝑄𝜃1
𝑠, 𝑎 , … , 𝑄𝜃𝐾

(𝑠, 𝑎) all very different.

We can view them as associated with different initial noise 𝑛1(𝑠, 𝑎).

● Over the course of training, for (𝑠, 𝑎)’s that are more often visited, their effective

magnitude of 𝑛𝑡(𝑠, 𝑎) decreases (because we train those DQNs without adding more

noise).

● For (𝑠, 𝑎)’s that are not often visited, their effective magnitude of 𝑛𝑡(𝑠, 𝑎) remains high.

● Why does this perform deep exploration? For a particular state 𝑠, if max
𝑎

 𝑄𝜃𝑖
(𝑠, 𝑎) is

initialized high but has not been visited many times before, the training of 𝜃𝑖 will

propagate this high value to other state and encourage the learner to reach 𝑠 from

other states.

Bootstrapped DQN

● In the toy example, as long as one of the 𝑲 DQNs initializes 𝑠⋆ (or some states

close to it) with a high value, then it can help the learner explore to 𝑠⋆.

● In this example, roughly we need 𝐾 = O(number of states) to achieve this effect.

r=1r=00.1

Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

𝑠⋆

Bootstrapped DQN
Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

4. Bonus from Information Gain

Estimating the Information Gain

Suppose that we model the world (e.g., state transition) as

𝑝𝜃(𝑠′|𝑠, 𝑎)

we have to calculate 𝒫 𝜃 ℋ

In order to calculate the information gain KL 𝒫 𝜃 ℋ, 𝑠, 𝑎, 𝑠′ , 𝒫 𝜃 ℋ

This is a well-known hard problem, and the way to do it is by introducing another

parameterized model 𝑞𝜙(𝜃) to approximate 𝒫 𝜃 ℋ .

𝑝𝜃 and 𝑞𝜙 is trained by maximizing the variational lower bound:

𝔼𝜃∼𝑞𝜙
log 𝑝𝜃(ℋ) − KL 𝑞𝜙(𝜃), 𝒫prior(𝜃)

Variational Information Maximizing Exploration (VIME)

For 𝑘 = 1,2, …

For 𝑖 = 1,2, … 𝑁:

Sample 𝑎𝑖, and observe the reward 𝑟𝑖 and next state 𝑠𝑖+1

Estimate one information gain KL 𝑞𝜙′(𝜃), 𝑞𝜙(𝜃)

Construct modified reward 𝑟𝑖
′ = 𝑟𝑖 + KL 𝑞𝜙′(𝜃), 𝑞𝜙(𝜃)

Use dataset (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖
′, 𝑠𝑖′) to update the policy

Update 𝑝𝜃 and 𝑞𝜙 by maximizing

𝔼𝜃∼𝑞𝜙
log 𝑝𝜃(ℋ) − KL 𝑞𝜙(𝜃), 𝒫prior(𝜃)

Houthooft et al. VIME: Variational Information Maximizing Exploration. 2017.

	Slide 1: Exploration in MDPs
	Slide 2: We have addressed all 3 main challenges in online RL
	Slide 3: We have addressed all 3 main challenges in online RL
	Slide 4: Regret Analysis for MDPs?
	Slide 5: Regret Analysis for MDPs?
	Slide 6: Regret Analysis for MDPs?
	Slide 7: Insufficiency of algorithms we have discussed for MDPs
	Slide 8: Exploration Bonus (Optimism Principle)
	Slide 9: Exploration Bonus (Optimism Principle)
	Slide 10: Exploration Bonus for MDPs
	Slide 11: Exploration Bonus for MDPs
	Slide 12: Exploration Bonus for MDPs
	Slide 13: Thompson Sampling
	Slide 14: Randomized Exploration for MDPs
	Slide 15: Randomized Exploration for MDPs
	Slide 16: Common Approaches of Exploration
	Slide 17: Information-Directed Exploration (1/3)
	Slide 18: Information-Directed Exploration (2/3)
	Slide 19: Information-Directed Exploration (3/3)
	Slide 20: Exploration in Large State Spaces with Function Approximation
	Slide 21: UCB / TS with Given State-Action Features
	Slide 22: How to Adapt These Ideas to General Cases?
	Slide 23: 1. Bonus from the Number of Prior Visits
	Slide 24: Pseudo Count
	Slide 25: Pseudo Count
	Slide 26: Pseudo Count
	Slide 27: Hash
	Slide 28: Hash
	Slide 29: Hash
	Slide 30: 2. Bonus from Prediction Error
	Slide 31: Bonus from Prediction Error
	Slide 32: Intrinsic Curiosity Module
	Slide 33: Random Network Distillation
	Slide 34: Random Network Distillation
	Slide 35: 3. Thompson Sampling
	Slide 36: Recall: Randomized Value Iteration
	Slide 37: Recall: Randomized Value Iteration
	Slide 38: Bootstrapped DQN
	Slide 39: Bootstrapped DQN
	Slide 40: Bootstrapped DQN
	Slide 41: Bootstrapped DQN
	Slide 42: 4. Bonus from Information Gain
	Slide 43: Estimating the Information Gain
	Slide 44: Variational Information Maximizing Exploration (VIME)

