Exploration in MDPs
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We have addressed all 3 main challenges in online RL

Data + Function approximation

Generalization

EG
BE
' Vi
IGW Exploration Qredlt
Assignment P
UCB

TS



We have addressed all 3 main challenges in online RL (?)
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Environment:

e Fixed-horizon MDP with episode length H
e Initial state at O

e A single rewarding state at state H

e Actions: Go LEFT or RIGHT

Suppose we perform DQN with e-greedy with random initialization
= On average, we need 2 episodes to see the reward

(before that, we won’'t make any meaningful update and will just do random walk around
state 0)



Regret Analysis for MDPs?

e \We have done regret analysis for several bandit algorithms:
e Regression oracle + (e-greedy or inverse gap weighting)
e UCB
o EXP3

e \We did not really establish regret bounds for MDPs

e Partially — DON under 2 assumptions: the data in replay buffer is exploratory and
Bellman completeness

e Not for policy-iteration-based algorithms



Regret Analysis for MDPs?
]Es~p [Vﬂ* (S)] — [Es~p [V(s)]

(1) =2 (@@l - n(al)Q’(.0) = ) dis,0) () - 0°.0)

For VI-based algorithm (approximating@
Approximating Q* (s, a) requires the replay buffer to cover wide range of state-actions.

@ — Z]dg*(s) (TL’*(alS) — n(als))wz Z dg*(S, Cl) (QE(S, Cl) . VT[(S))

For Pl-based algorithm (approximating Q™)
Approximating Q™ (s, a) only requires state-actions generated from current policy

But...



Regret Analysis for MDPs?

> dE(s,@) (7(5) = Q*(5,0))
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Pl-based algorithm only tries to make ., d

It can only quickly find optimal policy whe

dy*(s,a) (Q™(s,a) —

V”(s)) small.




Insufficiency of algorithms we have discussed for MDPs

e Lack of exploration over the state space (we need deep exploration)

e This issue is particularly critical if
e Local reward does not provide any information ( Spaee reward )
e Local reward provide misleading information
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e Solution
e Try to make the data (i.e., state-action) distribution close to d™
e Try to visit as many states as possible



Exploration Bonus (Optimism Principle)

e \We have discussed this idea for action exploration — UCB.

Upper Confidence Bound

a, = argmax, R,(a)+
N

2log(2/6)

Ni(a)

R, (a) = the empirical mean of arm a up to time t — 1.
N;(a) = the number of times we draw arm a up to time t — 1.




Exploration Bonus (Optimism Principle)

a, = argmax, R,(a)+

2log(2/6) 3

N (a) |

N

fpt = T (RED- R()

CFE-E) (R 5 nr-a)

‘pa’n«f

L

O Re(a)«by(x) R(x)

@ zjbt({e) L Sab *(:w(T)

20

,-t-

B @



Exploration Bonus for MDPs

|

UCB Value Iteration (UCBVI) (—f‘m#e STC - M,m)
For episode 1, 2, ..., T

Qyi1(s,a) =0 Vs,a
ForstepH,H—1,...,1:

éh (Sr a)

Receive s; ~ p
Forstep 1,2, ..., H:
Take action a;, = argmax, Qy (s, @)

R(s,a) z P(s'|s,a) max Qp41(s',a’)
a
S’

2 log (2/6)
H\/ N:(s,a)

Receive 1, = R(sy, ap) + noise, sp.1 ~ P(: |sp, ap)

-

e ——

Vs, a




Exploration Bonus for MDPs

) P 5 ~ 21 2/6
Qn(s,a) = R(s,a) +zP(S'|S, a) maxQy.,(s’,a") + H 0g (2/9) Vs, a
- a’ \ Nt(s,a)
S
C%)\;(?ﬂ) 2 Onl52) Vel whp.
@H (§4) = E (5= ) 2('5(/5) >/ CQ: () = R(5<)
We(s,2)
To hew
Q. 2(y
Qp, (5 = B (s + 2— (O(g ) [Ca\)+ Z o (s1s) U, (3 /fa«)
-t H ’zlg(}/(

wbs) 2 R+ ;2 P(s52) o () = @) (55)



Exploration Bonus for MDPs

Theorem. Regret Bound of UCBVI Z(/(ﬁ Y-V ,/? 2
=l

UCBVI ensures with high probability,

T = T
Regret = Z(V*(sm) — V™ (sp1)) S HVSAT.

t=1

.@‘

:3 Improving the required number of
episodes fro 0 poly(H)

Jaksch, Ortner, Auer. Near-Optimal Regret Bounds for Reinforcement Learning. 2010.
Azar, Osband, Munos. Minimax Regret Bounds for Reinforcement Learning. 2017.



Bayesian interpretation:

Thom pSOﬂ Sam p“ng Assume the reward mean (@..ﬁpﬁl)) IS drawn
(Posterior Sampling) from a Gaussian distribution (prior distribution).
Then the posterior distribution is
~ 1
M’o’( R ) PO@IH,) =N (R (a
o ( ( )l t) t( ))Nt(a)

L—

et 1o Jnd 0 O

UCB: a, ~ argmax, R;(a) +c - (
NG ( T5: saepe 90 PO Ay

TS: a; = argmax, Rt(a) +c —nt(a) with n.(a) ~ NV (0,1) C'/ f’"”k Qe = "“IJ;L“& é(=)

(r Gl of O(«) UCB estimators
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Randomized Exploration for MDPs

Randomized Value Iteration

For episode 1, 2, ..., T
Qu+1(s,a) =0 Vs,a
ForstepH,H—1,...,1:

Qn(s,a) 2 R(s,a) + E P(s'|s,a) max Qp41(s',a’) + H
a
5 N

Receive s; ~ p
Forstep 1,2, ..., H:
Take action a;, = argmax, Qy (s, @)
Receive 1, = R(sy, ap) + noise, sp.1 ~ P(: |sp, ap)

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.



Randomized Exploration for MDPs

1-1/N 1-1/N 1-1/N 1-1/N ro

-7 -__“L ”‘__‘_‘\A ,” T A -7 B T
V\‘.- - - _ ~_"o’ Vx\_— —“/ ~ —"/

Algorithm Algorithm
§ 600 — eGreedy B 3e+05- — eGreedy
& —RLSVI = Aancdiv 2008 & — RLSVI
g = 43000~
=400 "R 2e+05 - =
g E = Algorithm
-% ‘g, L - + RSLVI (0=0.1, x=1, K=10)
e € 1e+05- S 2000~
5200 — 5 1et05 = .
e E -~ L]
= . .
0- 0e+00 - % 1000~ P S S I
0 500 _ 1000 1500 2000 0e+00 5¢+05 le+06 i e e e SR e wre T e
o . . .M...c . ® [
Episode Episode 2 P
(a) First 2000 episodes (b) First 10° episodes ! " Chain length v
Fjgure 2 Efﬁcient exploration on a SO_Chain Figure 3. RLSVI learning time against chain length.

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.



Common Approaches of Exploration

e Optimistic Exploration
e Upper Confidence Bound

e Randomized Exploration
e Thompson Sampling (Posterior Sampling)

e Information-Directed Exploration



Information-Directed Exploration (1/3)

Another Bayesian approach — like Thompson sampling.

Assume the parameter of the world (e.g., the mean reward of the arms) is
drawn a Pyrior

(01,"‘ . QA)
After observing history H; = (a{,1y, a5, 1, ...,a:_1,7+—1), We can calculate
the posterior distribution of 6:

P(}[t»e) _ P(}[tle)Pprior(H)
P(Hy) P(Hy)
PO %) P (6:[xg)..

P(‘Qfl}[t) = X P(}[tlg)Pprior(H)
/

Key question: Based on the posterior estimation of the world P(8|H;),
what action should we pick next?




Information-Directed Exploration (ZIEA\‘
R(3)

o~ _

Thompson Sampling: Sampl@ P( !}[_t) and choose a; = a*(0;) = argmax 6;(a)

The optimal action

Equivalently, execute m(a) = Wz Eg-p iz l{a™(8) = a}] in the world of 6,

Information-directed Sampling: Select an arm that tradeoffs regret and information gain

Regretg () = max 8(a*) — 6(m)
a

InfoGa — E._ KL(P(- |7, 7w, 7), P(- | K How much will the posterior change after
nfoGaing (1) T 9(n)[ (,_(_____l_______t__%t) =—(—|—-’i))] obtaining a new sample from ?

Execute m = argmin Eg_p(.|3;,) [Regretg(m) — A InfoGaing ()]
VI3

Russo and Van Roy. Learning to Optimize via Information-Directed Sampling. 2014.
Foster et al. The Statistical Complexity of Interactive Decision Making. 2021.



Information-Directed Exploration (3/3)

When is information-directed exploration better than optimistic / posterior exploration?

arm 1

arm 2

arm 3

Suppose we know there are two possible worlds, where the three arms follow

{Bernoulli(0.5), Bernoulli(0.6), 0.4} or {Bernoulli(0.6), Bernoulli(0.5), &2}
0.3

= Although we know arm 3 is definitely not the best arm, we still want to
sample it (once), so we can easily tell which world we’re in.



Exploration in Large State Spaces
with Function Approximation



UCB / TS with Given State-Action Features

Suppose for any (s,a), we have access to a feature vector ¢(s,a) ¢

Then instead of counting the #visits to every state-action, we can evaluate the’ s 3
vy of the feature. -

[ /8(‘/5-4)—‘0(-/5.-1//
e

A ¢(’>:(’,”v,°] C " Uy
/L.(5.4) "/((fﬁ)l < C/\/CP(SA)/\Z% b(2) = [o.1.05,5) \At: ;;M%h; ain) P (sin, any*/

(,6(,4) = Ca,aa.;,,_) /

LSVI-UCB 0,,(s,a) +zp(s’|s, a) max Qy.1(s',a") c.\/(p(s, A)A71¢(s, a)
Sl
Jinetal. Provably efficient reinforcement learning with linear function approximation. 2019. \\\__—_—‘/

RLSVI 0,(s,a) 2 R(s,a) + Z P(s'|s,a) max Qni1(s’,a’) +c-N(0,p(s,a)Astd(s, a))

Zanette et al. Frequentist Regret Bounds for Randomized Least-Squares Value Iteration. 2019.



How to Adapt These Ideas to General Cases?

ldeas from UCB: / or N(i > (theoretically better for deterministic environment)

1
JN(s,a)

2. R(s,a) = R(s,a) + e(s,a) where e(s,a) =~ Prediction error on R(s,a) and P(: |s, a)

1. R(s,a) = R(s,a) + where N(s,a) = Amount of prior visit to (s, a)

ldeas from TS.:
3. R(s,a) = R(s,a) + noise whose variance scales with the uncertainty of R(s,a) and P(: |s,a)

ldeas from Information-directed Sampling:
4. R(s,a) = R(s,a) + AKL(P(- |H,,s,a,5"), P(- |HL))

Information gain

After all these, just perform standard RL algorithm over R.



1. Bonus from the Number of Prior Visits



Pseudo Count

fo(s)
idea: fit a density model(pg(s) for py(s,a))

pe(s) might be high even for a new s /\/\

if s is similar to previously seen states S o
3

A
LTI

: 4

can we use py(s) to get a “pseudo-count”?
—

if we have small MDPs after we see(s,)Jwe have;

the true probability is:

N(s)+1

count P’ (S) - o
n

probability /density total states visited

‘ _ can we get pg(s) and py (s) to obey these equations?

Bellemare et al. Unifying Count-Based Exploration and Intrinsic Motivation. 2016 (Source: Sergey Levine’s Deep RL)



Pseudo Count

fit model py(s) to all states D seen so far

_—

take a step 7 and observ

[

fit new model py/(s) to DUs;

=

use py(s;) and py/(s;) to estimate N(s)
\ 2\
. o e
set 7, =1; + B(N(S)) — “pseudo-count” /‘V /S )

how to get N(s)? use the equations

N(s:) _ N(si) +1
pO(Sz) _ IfL p@’(sz) _ ’fl, + 1
two equations and two unknowns!
- & 1 — pyr(si)
N(s;) = npy(s; n= po(si)
(8:) = fipo (s:) per (si) — po(si)

Bellemare et al. Unifying Count-Based Exploration and Intrinsic Motivation. 2016 (Source: Sergey Levine’s Deep RL)



Pseudo Count

i

Score
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— 3 300}
250} 15000 }
2001 10000 t
150 }
100} £2.225 5000
50 + p
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No bonus

With bonus

Training frames (millions)

Bellemare et al. Unifying Count-Based Exploration and Intrinsic Motivation. 2016

(Source: Sergey Levine’s Deep RL)



Hash

What if we still count states, but in a different space?

idea: compress s into a k-bit code via ¢(s), then count N(¢(s))
shorter codes = more hash collisions

similar states get the same hash? maybe

¢(s) =sgn(Ag(s)) € {-1,1}", (2)

where g : S — RP is an optional preprocessing function and A is a k x D matrix with i.i.d. entries
drawn from a standard Gaussian distribution A (0, 1). The value for k controls the granularity: higher
values lead to fewer collisions and are thus more likely to distinguish states.

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. 2017.



Hash

improve the odds by learning a compression:

.
o xo h|-: [+]
!
W,

96x5x5 o s12 . SO /96 x5x5
. 96x 11x11 . N
96 x 24 x 24

d " 6 linear softmax

96 x 10 x 10
96 x 24 x 24

1 %x52x52 I1x52x52 64x52x52

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. 2017.



Hash
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700
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400} --.
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200/

100

300

(b) Frostbite

TRPO-AE-SimHash

TRPO-BASS-SimHash|...
TRPO-pixel-SimHash

1200

1000

(e) Solaris

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning.

(c) Gravitar

(f) Venture



2. Bonus from Prediction Error



Bonus from Prediction Error
(( [Z\(S"')"k(S_c\)M
Ideally, we would like to estimate ||P(: |s,a) — P(- |s,a)|| and set it as bonus.

However, we don’t know the ground-truth transition, so the best we can do is try

to predict the next state.
54 "f\ ? ) < ¢
/ 1'4:/ ;(
There are some issues if we naively do this:

1. For stochastic environments where transitions are random, we will never have small
prediction error for next state.

2. For many environments, some part of the state is uncontrollable by the learner
(e.g., movement of the clouds in the background).




Intrinsic Curiosity Module

s
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./ Task 1: Given s, and s, 1, predict a,: make the feature ¢ capture action-related dynamics

JTask 2: Given ¢(s;) and a;, predict ¢(s¢+1)

Pathak et al. Curiosity-driven Exploration by Self-supervised Prediction. 2017.



Random Network Distillation

let’s say we have some target functionm low nove\ltr
given our buffer D = {(s;,a;)}, ﬁ@ | '_'I
use £(s,a) = ||fo(s,a) — f*(s,a)||* as bonus high novelty

what should we use for f*(s,a)?

one common choice: set f*(s,a) = s’ — i.e., next state prediction

even simpler: f*(s,a) = fy(s,a), where ¢ is a random parameter vector

Burda et al. Exploration by Random Network Distillation. 2018.



Random Network Distillation

-~ PPO RND —— Dynamics
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Burda et al. Exploration by Random Network Distillation. 2018.



3. Thompson Sampling



1

Wil

Recall: Randomized Value lteration

Randomized Value lteration —

For episode 1,2, ..., T: — _

Qus+1(s,a) =0 Vs,a \/\
ForstepH,H—1,...,1:

@mv o Vilue foe U Ffrom P( ["‘f{,)

~ . R ~ 21og(2/6
Qn(s,a) = R(s,a) + z P(s'|s,a) max Qn41(s’,a’) +\H ]\Zi C/l))}tsj a)

\

H_J

—

Receive s; ~ p

Forstep 1,2, ..., H:
Take action a;, = argmax, Qy (s, @)
Receive 1, = R(sy, ap) + noise, sp.1 ~ P(: |sp, ap)

~ N (0,1

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.




Recall: Randomized Value lteration

0,,(s,a) 2 R(s,a) +ZP(S |s,a) max Qp41(s’,a’) A/ /o ,(;-(;q)

Adapting this idea to DON:.

6 = argmin z (r + max Qg(s’,a’) + ni(s,a) — Qg (s, a))z (*)

7]
(s,a,r,s')EB

Notice that difference noise gives different 6.

Direct generalization from Randomized VI (not easy to implement)

In each episode, sample a 8 € O with the distribution following (*),

and execute m(s) = argmax Qg (s, a)
a

® = Space of 8's




Osband et al. Deep Exploration via Bootstrapped DQN. 2016.
B O OtSt r ap p ed DQ N Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

Randomly initialize K instances of DQN 6y, ..., 0
(each 6; has their own target network 8; and replay buffer B;).

For each episode:
Randomly Sample L~ Unlf{l’z’ ) K} (a) Shared network architecture
Execute (s) = max Qg, (s, a) in the whole episode.
a
Randomly place the obtained (s, a,r,s") in some/all replay buffers.

Update all DQN parameters.




Osband et al. Deep Exploration via Bootstrapped DQN. 2016.
B O O tSt r ap p ed DQ N Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.
édqﬂ—[('(tbtllb'J__D
Some intuitions: T

e The random initialization makes Qg, (s,a), ..., Qg, (s, a) all very different.
We can view them as associated with different initial noise n,(s,a). &A/s_ 1)

e Over the course of training, for (s, a)’s that are more often visited, their effective
magnitude of n,(s, a) decreases (because we train those DQNs without adding more
noise).

e For (s,a)’s that are not often visited, their effective magnitude of n,(s, a) remains high.

e Why does this perform deep exploration? For a particular state s, if max Qg,(s,a) Is
a

Initialized high but has not been visited many times before, the training of 8; will
propagate this high value to other state and encourage the learner to reach s from
other states.



Osband et al. Deep Exploration via Bootstrapped DQN. 2016.
B O O tSt r ap p ed DQ N Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

e |n the toy example, as long as one of the K DQNs initializes s* (or some states
close to it) with a high value, then it can help the learner explore to s*.

e In this example, roughly we need K = O(number of states) to achieve this effect.




Osband et al. Deep Exploration via Bootstrapped DQN. 2016.
B O OtSt r ap p ed DQ N Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

“Deep Sea” Exploration

® Stylized “chain” domain testing “deep exploration™:

- State = N x N gnd, observations 1.hot

i
'.‘5

- Start in top left coll, fall one row each step
- Actions (0. 1) map to laft 'nght in sach cell _ | |
- "left”™ has reward = 0, “right” has reward = -0.1/N "
.. but if you make it to bottom right you get +1, T

® Only one P licy (out of morg than 2% positive returm

® z.greedy / Boltzmann / policy gradient / are useless F = T ‘



4. Bonus from Information Gain



Estimating the Information Gain

P

S0 —
Suppose that we model the world (e.g., state transition) as (/

= PCSa
Ge(slls,a) 9a eB;PS[f)

In order to calculate the mformat ain KL(P(0|H,s,a,s"), P(O|H))

we have to calculate P(0|H) - P(”W
meé) F(H(Ov)

This Is a well-known hard problem, and the wayto do it is by introducing another
parameterized model g, (6) to approximate P (8|#). () 95 (0) % F(s]re)

pe and q Is trained by maximizing the variational lower bound.@ Mg vr £y

49Q

IIE:9~q¢ [log Po (}[)] - KL(qu (6), :Pprior(e))



Variational Information Maximizing Exploration (VIME)

Fork =1,2,..
Fori=1,2,..N:
Sample a;, and observe the reward r; and next state Si+1 3cp L ok
Estimate one information gain KL (%1(9),512_(_@) B> posterier aftu Sesy (Siair 5.
Construct modified reward r{ = r; + KL (q¢r(9), de (0))

Use dataset {(s;, a;, 17, s;')} to update the policy

Update py and g4 by maximizing

IIE‘:9~q¢, [log Pe (}[)] — KL(q(,b (0)' :Pprior(e))

Houthooft et al. VIME: Variational Information Maximizing Exploration. 2017.
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