## Supplementary Materials

6501-003 Reinforcement Learning (Spring 2025)

## 1 Inverse Gap Weighting for Multi-Armed bandits

## Algorithm 1 Inverse Gap Weighting

**Parameter**:  $\lambda > 0$ .

for  $t=1,2,\ldots,T$  do

Let 
$$\hat{R}_t(a) = \frac{\sum_{\tau < t} \mathbb{I}\{a_\tau = a\}r_\tau}{\sum_{\tau < t} \mathbb{I}\{a_\tau = a\}}.$$

// if  $\sum_{\tau < t} \mathbb{I}\{a_{\tau} = a\} = 0$  then define  $\hat{R}_t(a) = 0$ 

Let  $b_t = \operatorname{argmax}_{a \in \mathcal{A}} \hat{R}_t(a)$ .

// break ties arbitrarily

Define  $\operatorname{Gap}_t(a) = \hat{R}_t(b_t) - \hat{R}_t(a)$ .

Sample  $a_t$  from distribution  $\pi_t$ , defined as

$$\pi_t(a) = \frac{1}{\gamma_t + \lambda \mathsf{Gap}_t(a)}$$

where  $\gamma_t$  is a normalization factor that makes  $\sum_{a \in \mathcal{A}} \pi_t(a) = 1$  (as discussed in the class,  $\lambda_t \in [1, A]$ ).

Receive  $r_t = R(a_t) + w_t$ , where  $w_t$  is a zero-mean noise.

**Theorem 1.** Inverse gap weighting (Algorithm 1) with parameter  $\lambda$  ensures

$$\mathbb{E}[Regret] \le O\left(\frac{AT}{\lambda} + \lambda \log^2 T + \sqrt{AT \log T}\right).$$

*Proof.* Define  $N_t(a) = \sum_{\tau < t} \mathbb{I}\{a_\tau = a\}$  and  $N_t^+(a) = \max\{N_t(a), 1\}$ . By Hoeffding's inequality and a union bound over all  $a \in \mathcal{A}$  and time t, we have

$$\left| \hat{R}_t(a) - R(a) \right| \le \sqrt{\frac{2\log(2AT/\delta)}{N_t^+(a)}} \tag{1}$$

for all  $a \in \mathcal{A}$  and t with probability at least  $1 - \delta$ .

Suppose (1) holds. Consider the regret at round t:

$$R(a^{*}) - R(a_{t})$$

$$= \left(\hat{R}_{t}(a^{*}) - \hat{R}_{t}(a_{t})\right) + \left(R(a^{*}) - \hat{R}_{t}(a^{*})\right) + \left(\hat{R}_{t}(a_{t}) - R(a_{t})\right)$$

$$\leq \left(\hat{R}_{t}(a^{*}) - \mathbb{E}_{a \sim \pi_{t}}[\hat{R}_{t}(a)]\right) + \left(\mathbb{E}_{a \sim \pi_{t}}[\hat{R}_{t}(a)] - \hat{R}_{t}(a_{t})\right) + \sqrt{\frac{2\log(2AT/\delta)}{N_{t}^{+}(a^{*})}} + \sqrt{\frac{2\log(2AT/\delta)}{N_{t}^{+}(a_{t})}}.$$
(2)

We further bound the first term in (2).

$$\begin{split} \hat{R}_t(a^\star) - \mathbb{E}_{a \sim \pi_t}[\hat{R}_t(a)] &= \mathbb{E}_{a \sim \pi_t}[\mathrm{Gap}_t(a)] - \mathrm{Gap}_t(a^\star) \\ &= \sum_{a \in \mathcal{A}} \pi_t(a) \mathrm{Gap}_t(a) - \mathrm{Gap}_t(a^\star) \end{split} \tag{by the definition of } \mathrm{Gap}_t)$$

$$= \sum_{a \in \mathcal{A}} \frac{\operatorname{Gap}_{t}(a)}{\gamma_{t} + \lambda \operatorname{Gap}_{t}(a)} - \operatorname{Gap}_{t}(a^{\star})$$

$$\leq \sum_{a \in \mathcal{A}} \frac{\operatorname{Gap}_{t}(a)}{\lambda \operatorname{Gap}_{t}(a)} - \left(\frac{1}{\lambda \pi_{t}(a^{\star})} - \frac{A}{\lambda}\right) \qquad (\frac{1}{\pi_{t}(a^{\star})} = \gamma_{t} + \lambda \operatorname{Gap}_{t}(a^{\star}) \leq A + \lambda \operatorname{Gap}_{t}(a^{\star}))$$

$$\leq \frac{2A}{\lambda} - \frac{1}{\lambda \pi_{t}(a^{\star})}. \tag{3}$$

Now, summing (2) over t and using (3), we get

$$\begin{split} \operatorname{Regret} & \leq \sum_{t=1}^{T} \left( \frac{2A}{\lambda} - \frac{1}{\lambda \pi_t(a^\star)} + \left( \mathbb{E}_{a \sim \pi_t}[\hat{R}_t(a)] - \hat{R}_t(a_t) \right) + \sqrt{\frac{2 \log(2AT/\delta)}{N_t^+(a^\star)}} + \sqrt{\frac{2 \log(2AT/\delta)}{N_t^+(a_t)}} \right) \\ & = \frac{2AT}{\lambda} + \underbrace{\sum_{t=1}^{T} \left( -\frac{1}{\lambda \pi_t(a^\star)} + \sqrt{\frac{2 \log(2AT/\delta)}{N_t^+(a^\star)}} \right)}_{\text{term}_1} + \underbrace{\sum_{t=1}^{T} \left( \mathbb{E}_{a \sim \pi_t}[\hat{R}_t(a)] - \hat{R}_t(a_t) \right)}_{\text{term}_2} + \underbrace{\sum_{t=1}^{T} \sqrt{\frac{2 \log(2AT/\delta)}{N_t^+(a_t)}}}_{\text{term}_3}. \end{split}$$

Below we bound the expectation of the three terms above. First, notice that when (1) holds,

$$\mathbf{term}_1 \le \sum_{t=1}^T \frac{\lambda \log(2AT/\delta)\pi_t(a^*)}{2N_t^+(a^*)}. \qquad (using -u + \sqrt{2uv} \le \frac{v}{2} \text{ for } u, v > 0)$$

Thus,

$$\mathbb{E}[\mathbf{term}_{1}] \leq \mathbb{E}\left[\sum_{t=1}^{T} \frac{\lambda \log(2AT/\delta)\pi_{t}(a^{\star})}{2N_{t}^{+}(a^{\star})}\right] + \delta T$$

$$= \mathbb{E}\left[\sum_{t=1}^{T} \frac{\lambda \log(2AT/\delta)\mathbb{I}\{a_{t} = a^{\star}\}}{2N_{t}^{+}(a^{\star})}\right] + \delta T$$

$$= \lambda \log(2AT/\delta)\mathbb{E}\left[\frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} \cdots + \frac{1}{N_{T}^{+}(a^{\star})}\right] + \delta T$$

$$\leq O\left(\lambda \log(AT/\delta)\log T + \delta T\right).$$

It is straightforward that

$$\mathbb{E}[\mathbf{term}_2] = 0.$$

Finally,

$$\begin{aligned} \mathbf{term}_3 &= \sqrt{2\log(2AT/\delta)} \sum_{a \in \mathcal{A}} \sum_{t=1}^T \sqrt{\frac{\mathbb{I}\{a_t = a\}}{N_t^+(a)}} \\ &= \sqrt{2\log(2AT/\delta)} \sum_{a \in \mathcal{A}} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{N_T^+(a)}}\right) \\ &= O\left(\sqrt{\log(AT/\delta)} \sum_{a \in \mathcal{A}} \sqrt{N_T^+(a)}\right) \\ &\leq O\left(\sqrt{\log(AT/\delta)} \sqrt{A\left(\sum_{a \in \mathcal{A}} N_T^+(a)\right)}\right) \end{aligned} \tag{by Cauchy-Schwarz inequality)}$$

$$= O\left(\sqrt{AT\log(AT/\delta)}\right).$$

Hence,

$$\mathbb{E}[\mathbf{term}_3] = O\left(\sqrt{AT\log(AT/\delta)} + \delta T\right).$$

Choosing  $\delta = \Theta(1/T)$  and using the assumption that  $A \leq T$  (this is without loss of generality), we get

$$\mathbb{E}[\mathsf{Regret}] \leq O\left(\frac{AT}{\lambda} + \lambda \log^2(T) + \sqrt{AT \log T}\right).$$