Markov Decision Processes

Chen-Yu Wei

Sequence of Actions

To win the game, the learner has to take a sequence of actions $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_H$. The effect of a particular action may not be revealed instantaneously.

- Some effect may be revealed instantaneously
- Some may be revealed later

Sequence of Actions

(a summary of the current status in a multi-stage game)

Interaction Protocol (Episodic Setting)

For **episode** t = 1, 2, ..., T:

 $h \leftarrow 1$

Environment generates initial state $s_{t,1}$

While episode t has not ended:

Learner chooses an action $a_{t,h}$

Markov assumption:

 $r_{t,h}$ and $s_{t,h+1}$ are conditionally independent of $(s_{t,1}, a_{t,1}, \dots, s_{t,h-1}, a_{t,h-1})$ given $s_{t,h}$

6 6 1

Learner observes instantaneous reward $r_{t,h}$ with $\mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h})$

Environment generates next state $s_{t,h+1} \sim P(\cdot | s_{t,h}, a_{t,h})$

 $h \leftarrow h + 1$

Goal: maximize

It: longth of episode t

From Observations to States

Stacking recent observations

Recurrent neural network

 \mathbf{H}_{t+1}

Hidden Markov model

Regret (Episodic Setting)

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Example: Racing

S	a	<i>s</i> ′	P(s' s,a)	R(s,a)	
	Slow		1.0	+1	
	Fast		0.5	+2	
	Fast		0.5	+2	
	Slow		0.5	+1	0.5
	Slow		0.5	+1	+1 Slow
	Fast		1.0	-10	Slow
	(end)		1.0	0	Fast 1.0 +1 Cool 0.5

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - Markov policy
 - Stationary policy

Horizon = Length of an episode

Interaction Protocols (1/3): Fixed-Horizon

Horizon length is a fixed number H

 $h \leftarrow 1$ Observe initial state $s_1 \sim \rho$ While $h \leq H$: Choose action a_h Observe reward r_h with $\mathbb{E}[r_h] = R(s_h, a_h)$ Observe next state $s_{h+1} \sim P(\cdot | s_h, a_h)$

Examples: games with a fixed number of time

Interaction Protocols (2/3): Goal-Oriented

The learner interacts with the environment until reaching terminal states $T \subset S$

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: video games, robotics tasks, personalized recommendations, etc.

Interaction Protocols (3/3): Infinite-Horizon

The learner continuously interacts with the environment

```
h \leftarrow 1
Observe initial state s_1 \sim \rho.
Loop forever:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: network management, inventory management

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - Markov policy
 - Stationary policy

Performance Metric

Total Reward (for episodic setting): $\left(\sum_{i=1}^{\tau} r_{h}\right)$ (τ : the step where the episode ends)

Average Reward (for infinite-horizon setting):

$$\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} r_h$$

Discounted Total Reward (for episodic or infinite-horizon): $\sum \gamma^{h-1} r_h$

 τ : the step where the episode ends, or ∞ in the infinite-horizon case $\gamma \in [0,1)$: discount factor

Interaction Protocols vs. Performance Metrics

Discounted Total Reward?							
Infinite-horizon	>	Average Reward	Could have constant change for an infinitesimal change in policy				
Goal-Oriented	>	Total Reward	Could be unbounded				
Fixed-Horizon	"natural" objective	Total Reward					

Focusing more on the **recent** reward

There is a potential mismatch between our ultimate goal and what we optimized.

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - Markov policy
 - Stationary policy

Policy for MDPs

Markov Policy

$$\left(\begin{array}{c} \mathcal{T} = \left(\begin{array}{c} \mathcal{I}_{I}, \mathcal{I}_{L}, \cdots, \mathcal{I}_{H}, \cdots \right) \\ = \\ \uparrow \end{array} \right)$$

 $\begin{array}{ccc} (a_h) \sim & \pi_h(\cdot \mid s_h) \in \Delta_A \\ a_h = & \pi_h(s_h) \in \mathcal{A} \end{array} & \begin{array}{c} (s_h \cdot s_h) \in \mathcal{A} \\ For \ fixed-horizon \ setting, \ there \ exists \ an \\ optimal \ policy \ in \ this \ class \end{array}$

$$a_h \sim \pi(\cdot | s_h) \\ a_h = \pi(s_h)$$

For **infinite-horizon/goal-oriented** settings, there exists an optimal policy in this class

 \mathcal{V}

A stationary policy specifies π (Slow | Cool) π (Fast | Cool) π (Slow | Warm) π (Fast | Warm)

A Markov policy specifies

 $\pi_{h}(\text{Slow} | \text{Cool})$ $\pi_{h}(\text{Fast} | \text{Cool})$ $\pi_{h}(\text{Slow} | \text{Warm})$ $\pi_{h}(\text{Fast} | \text{Warm})$

 $\forall h$

Value Iteration (Fixed-Horizon)

Two Tasks

- **Policy Evaluation:** Calculate the expected total reward of a given policy What is the expected total reward for the policy $\pi(\text{cool}) = \text{fast}, \pi(\text{warm}) = \text{slow}$? **Policy Optimization:** Find the best policy
- What is the policy that achieves the highest expected total reward?

Bellman Equation

 Q_h^{π} is called "the state-action value functions of policy π " V_h^{π} is called "the state value function of policy π " Both can be just called "**value functions**"

$$Q_{h}^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$
$$V_{h}^{\pi}(s) = \sum_{a} \pi_{h}(a|s) Q_{h}^{\pi}(s,a)$$

or

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s',a'} P(s'|s,a) \pi_{h+1}(a'|s') Q_{h+1}^{\pi}(s',a')$$

or

$$V_{h}^{\pi}(s) = \sum_{a} \pi_{h}(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s') \right)$$

Value Iteration for Policy Optimization

states
$$\begin{cases} \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \bigcirc & & \bigcirc & & \bigcirc & & \bigcirc \\ \vdots & \vdots & & \vdots & & \vdots \\ \bigcirc & \bigcirc & & \bigcirc & & & \bigcirc \\ h = 1 \quad h = 2 \qquad h = 3 \qquad h = H \end{cases}$$

State transition: P(s'|s, a)Reward: R(s, a)

$$Q_h^{\star}(s,a) = \max_{\pi \in \Pi_M} \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| (s_h, a_h) = (s,a) \right]$$
$$V_h^{\star}(s) = \max_{\pi \in \Pi_M} \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| s_h = s \right]$$

Backward induction:

$$V_{H+1}^{\star}(s) = 0 \qquad \forall s$$

For
$$h = H, \dots 1$$
: for all s, a

$$Q_{h}^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$

Expected optimal total
reward from step $h + 1$

$$V_h^{\star}(s) = \max_a Q_h^{\star}(s, a) \qquad \pi_h^{\star}(s) = \operatorname*{argmax}_a Q_h^{\star}(s, a)$$

Exercise

Assume H = 3

 $Q_3^{\star}(s,a) = \mathcal{K}(\mathfrak{l},a)$ $Q_3^{\star}(\text{cool, slow}) \leq$ $Q_3^{\star}(\text{cool, fast}) = 2$ $Q_3^*(\text{warm, slow}) = 1$ $Q_3^*(\text{warm, fast}) = -0$ $V_3^{\star}(s)$ $V_3^*(\text{cool}) \neq 2$ $V_3^{\star}(\text{warm}) = 1$ $Q_{2}^{*}(s, a) = \Re(s, a) + \sum_{s'} P(s'|s, a) V_{3}(s')$ $Q_{2}^{*}(cool, slow) = 1 + V_{3}^{*}(cool) = 3$ $Q_2^{*}(cool, fast) = 2 + 0.5 V_3^{*}(cool) + 0.5 V_3^{*}(mm) = 3.5$ $Q_2^{\star}(\text{warm, slow}) = 1 + 0.5 V_3^{\star}(\text{curl}) + 0.5 V_3^{\star}(\text{warm}) = 2.5$ $Q_2^{\star}(\text{warm, fast}) \simeq -(0)$ $V_2^{\star}(s)$ $\begin{pmatrix} V_2^*(\text{cool}) = 3.5 & \mathcal{I}_2^*(\text{cool}) \approx \text{fast} \\ V_2^*(\text{warm}) \approx 2.5 & \mathcal{I}_2^*(\text{mon}) \approx \text{slow} \\ \end{pmatrix}$

Bellman Optimality Equation

 Q_h^{\star} : optimal state-action value functions

 V_h^{\star} : optimal state value functions

or "optimal value functions"

$$Q_{h}^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$
$$V_{h}^{\star}(s) = \max_{a} Q_{h}^{\star}(s,a)$$

or

$$Q_{h}^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) \left(\max_{a'} Q_{h+1}^{\star}(s',a') \right)$$

$$V_{h}^{\star}(s) = \max_{a} \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s') \right)$$

$$\pi_h^\star(s) = \operatorname*{argmax}_a Q_h^\star(s, a)$$

Recall: Regret

Regret =
$$\max_{\pi^*} \mathbb{E}^{\pi^*} \left[\sum_{t=1}^T \sum_{h=1}^{\tilde{\tau}_t} R(\tilde{s}_{t,h}, \pi^*(\tilde{s}_{t,h})) \right] - \sum_{t=1}^T \sum_{h=1}^{\tau_t} R(s_{t,h}, a_{t,h})$$

$$\mathbb{E}[\text{Regret}] = \mathbb{E}\left[\sum_{t=1}^{T} \left(V_1^{\star}(s_{t,1}) - V_1^{\pi_t}(s_{t,1})\right)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^{T} \left(V_{1}^{\star}(\rho) - V_{1}^{\pi_{t}}(\rho)\right)\right]$$

$$V_1^{\pi}(\rho) \triangleq \mathbb{E}_{s \sim \rho}[V_1^{\pi}(s)]$$
$$S_{t,l} \sim \rho$$

(Discounted Variable-Horizon)

$$\begin{cases}
\left| \begin{array}{l} Q^{2}(s,a) = \left| \underbrace{\mathbb{E}} \left[\sum_{h=1}^{\infty} y^{h-1} R(S_{h}, a_{h}) \right| \leq s, y^{h-1} \left| S_{h} \right| = s^{h} \right|$$

$$= \left| \left| S_{h} \left| S_{h} \right| + \left| S_{h} \right| \leq s, y^{h-1} \left| S_{h} \right| \leq s, y^{h-1} \left| S_{h} \right| \leq s, y^{h-1} \left| S_{h} \right| = s^{h} \right| \right| \left| S_{h} \right| = s^{h} \right|$$

$$= \left| \left| S_{h} \left| S_{h} \right| + \left| S_{h} \right| \left| S_{h} \right| + \left| S_{h} \right| \left| S_{h} \right| + \left| S_{h} \right| \left| S_{h} \right| \left| S_{h} \right| \right| \right| \left| S_{h} \right| \left| S_{h} \right| \left| S_{h} \right| \right| \left| S_{h} \right| \left| S_$$

Bellman Equation

$$\bigcirc^{\mathsf{Z}}(S, \gamma) = \bigcirc^{\mathsf{Z}}_{\infty}(S, \gamma)$$

τ

∫ Æ (~~ه~(

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$$
$$V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

or

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi(a'|s') Q^{\pi}(s',a')$$

or

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

Convergence

- 1. Value Iteration for policy evaluation will terminate.
- 2. When it terminates, it holds that

$$\left|Q_{i}^{\pi}(s,a)-Q^{\pi}(s,a)\right|\leq \frac{\epsilon}{1-\gamma}\quad\forall s,a$$

Proof strategy: $\binom{not}{l}$ the surfaced proof 1) Prove that VI will terminate (i.e., $\max_{s,a} |Q_i^{\pi}(s,a) - Q_{i-1}^{\pi}(s,a)| \le \epsilon$ will eventually holds) 2) At termination, BellmanError $(Q_i^{\pi}) = \max_{s,a} \left| Q_i^{\pi}(s,a) - \left(R(s,a) + \gamma \sum_{s',a'} P(s'|s,a)\pi(a'|s')Q_i^{\pi}(s',a') \right) \right| \le \epsilon$

3) Use the Value error $\leq (1 - \gamma)^{-1}$ Bellmen Error lemma to claim

$$\left|Q_i^{\pi}(s,a)-Q^{\pi}(s,a)\right|\leq \frac{\epsilon}{1-\gamma}.$$

Convergence (A More General Statement of 2.)

Value error $\leq (1 - \gamma)^{-1}$ Bellmen Error Let $f: S \times A \to \mathbb{R}$ be **any** function (not necessarily generated by Value Iteration) lf $\left| f(s,a) - \left(R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi(a'|s') f(s',a') \right) \right| \le \epsilon \quad \forall s,a$ then $|f(s,a) - Q^{\pi}(s,a)| \le \frac{\epsilon}{1-\nu} \quad \forall s,a$

Value Iteration for Policy Optimization

Reward: R(s, a)

$$Q_{i}^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h},a_{h}) \middle| (s_{0},a_{0}) = (s,a) \right]$$

$$V_{i}^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h},a_{h}) \middle| s_{0} = s \right]$$

$$Q^{\star}(s,a) = Q_{\infty}^{\star}(s,a) \qquad V^{\star}(s) = V_{\infty}^{\star}(s)$$

$$V_{0}^{\star}(s) = 0 \quad \forall s$$
For $i = 1, 2, 3, ...:$ for all s, a

$$\stackrel{\star}{\leftarrow} (\mathfrak{I}^{\star}(s, n))$$

$$Q_{i}^{\star}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i-1}^{\star}(s')$$

$$V_{i}^{\star}(s) = \max_{a} Q_{i}^{\star}(s,a)$$
If $|Q_{i}^{\star}(s,a) - Q_{i-1}^{\star}(s,a)| \leq \epsilon$ for all s, a : terminate

Bellman Optimality Equation $\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$

$$Q^{\star}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\star}(s')$$
$$V^{\star}(s) = \max_{a} Q^{\star}(s,a)$$

$$Q^{\star}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{\star}(s',a')$$

or
$$V^{\star}(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\star}(s') \right)$$

Convergence (A More General Statement of 2.)

Value error $\leq (1 - \gamma)^{-1}$ Bellmen Error Let $f: S \times A \to \mathbb{R}$ be **any** function (not necessarily generated by Value Iteration) lf $\left| f(s,a) - \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} f(s',a') \right) \right| \le \epsilon \quad \forall s,a$ then $|f(s,a) - Q^*(s,a)| \le \frac{\epsilon}{1-\nu} \quad \forall s,a$

Convergence (A More General Statement of 3.)

Suboptimality $\leq (1 - \gamma)^{-1}$ Value Error Let $f: S \times A \to \mathbb{R}$ be **any** function (not necessarily generated by Value Iteration) lf $|f(s,a) - Q^*(s,a)| \le \epsilon \quad \forall s,a$ then $V^{\star}(s) - V^{\pi_f}(s) \le \frac{2\epsilon}{1-\nu} \quad \forall s$ where $\pi_f(s) = \operatorname{argmax} f(s, a)$

Summary (Fixed Horizon)

Definitions

 $Q_h^{\pi}(s,a) \triangleq \mathbb{E}^{\pi} \left| \sum_{k=h}^{H} R(s_k, a_k) \right| \quad (s_h, a_h) = (s,a)$

 $V_h^{\pi}(s) \triangleq \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \right] \quad s_h = s$

Relations (Bellman Equations)

$$Q_{h}^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$
$$V_{h}^{\pi}(s) = \sum_{a} \pi_{h}(a|s) Q_{h}^{\pi}(s,a)$$

Calculation (VI)

Calculate $Q_h^{\pi}(s, a), V_h^{\pi}(s) \forall s, a$ from h = H to h = 1

$$Q_{h}^{\star}(s,a) \triangleq \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_{k},a_{k}) \middle| (s_{h},a_{h}) = (s,a) \right] \qquad Q_{h}^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$
$$V_{h}^{\star}(s) \triangleq \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_{k},a_{k}) \middle| s_{h} = s \right] \qquad V_{h}^{\star}(s) = \max_{a} Q_{h}^{\star}(s,a)$$

Calculate $Q_h^{\star}(s, a), V_h^{\star}(s) \forall s, a$ from h = H to h = 1

Summary (Discounted Variable Horizon)

Definitions

Relations (Bellman Equations)

$$Q^{\pi}(s,a) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} R(s_{h},a_{h}) \middle| (s_{1},a_{1}) = (s,a) \right] \qquad Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \qquad Q^{\pi}(s,a) = V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} R(s_{h},a_{h}) \middle| s_{1} = s \right] \qquad V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a) \qquad Q^{\pi}(s,a) = V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

Calculate

Calculation (VI)

 $Q_i^{\pi}(s, a), V_i^{\pi}(s) \forall s, a$ for i = 1, 2, ...until convergence

$$Q^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} R(s_{h},a_{h}) \middle| (s_{1},a_{1}) = (s,a) \right] \qquad Q^{\star}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\star}(s')$$
$$V^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} R(s_{h},a_{h}) \middle| s_{1} = s \right] \qquad V^{\star}(s) = \max_{a} Q^{\star}(s,a)$$

Calculate $Q_i^*(s, a), V_i^*(s) \forall s, a$ for i = 1, 2, ...until convergence

Policy Iteration Policy Optimization

Policy Iteration

$$z_i: S \rightarrow A$$

Theorem (monotonic improvement). Policy Iteration ensures

$$\forall s, a, \qquad Q^{\pi_i}(s, a) \ge Q^{\pi_{i-1}}(s, a)$$

When converged (i.e., $\pi_i = \pi_{i-1}$), we have $\pi_i = \pi^*$.

(We will prove this later.)

Generalized Policy Iteration

 $Q_{1}(S,G) = Q^{\pi_{i-1}}(S,G) \quad (inductive prove this)$ Policy update For i = 1, 2, ... $\pi_i(s) = \max Q_i(s, a)$ $Q \leftarrow Q_i$ perform Value iteration to evalute Zi Repeat for *N* times: $Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi_i(a'|s') Q(s',a') \quad \leftarrow$ Value update $(s,a) \rightarrow \mathbf{k}$ $Q_{i+1} \leftarrow Q$

Notice: in value iteration for PO, there may not exist a policy π such that $Q_i = Q^{\pi}$. In contrast, in policy iteration we have $Q_i = Q^{\pi_{i-1}}$. VI for PO can be viewed as PI with incomplete policy evaluation

Summary

- Value Iteration for Policy Optimization (VI for PO)
 - Is essentially a **dynamic programming** algorithm
 - Finds the value functions of the optimal policy
- Value Iteration for Policy Evaluation (VI for PE)
 - Also a dynamic programming algorithm
 - Finds the value functions of the given policy
- Policy Iteration (PI)
 - An iterative policy improvement algorithm $(\mathcal{F}_r \mathcal{P} \mathcal{O})$
 - Each iteration involves a policy evaluation subtask
- VI for PO and PI can be viewed as special cases of Generalized PI

Performance Difference Lemma

Unanswered Questions

• For an estimation $\hat{Q}(s, a) \approx Q^*(s, a)$ with error, how can we bound

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho)$$
 where $\widehat{\pi}(s) = \underset{a}{\operatorname{argmax}} \widehat{Q}(s, a)$?

- How to show that Policy Iteration leads to monotonic policy improvement?
- Also, how are these methods related to the third challenge of online RL: credit assignment?

Performance Difference Lemma $\sum_{s,n} d_{\rho}^{z'}(s) \ \forall (s,n) = \sum_{s,n} d_{\rho}^{z'}(s,n) \ \forall (s,n) = \sum_{s,n} d_{\rho}^{z'}(s) \ \forall (s,n) = \sum_{s$

For any two stationary policies π' and π in the discounted setting,

$$\mathbb{E}_{s \sim \rho} \left[V_{\bullet}^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[V_{\bullet}^{\pi}(s) \right] = \sum_{s,a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi'}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s) \right)$$

П

$$d^{\pi}_{\rho}(s) \triangleq \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\{s_{h} = s\} \right] \quad s_{1} \sim \rho \right] \quad \text{Disc}$$

 $d_{\rho}^{\pi}(s,a) \triangleq \mathbb{E}^{\pi}\left[\sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\{(s_h,a_h) = (s,a)\} \middle| s_1 \sim \rho\right] =$

K=1

Discounted occupancy measure on state s $\sum_{a} d_{p}^{z}(s_{a}) = d_{p}^{z}(s)$

7(0)5

 $= \sum_{a} dp$

Performance Difference Lemma

We can also swap the roles of π' and π and apply the same lemma

$$\mathbb{E}_{s\sim\rho}[V^{\pi}(s)] - \mathbb{E}_{s\sim\rho}\left[V^{\pi'}(s)\right] = \sum_{s,a} d^{\pi}_{\rho}(s) \left(\pi(a|s) - \pi'(a|s)\right) Q^{\pi'}(s,a)$$

$$\stackrel{\times (-1)}{\Rightarrow} \mathbb{E}_{s\sim\rho}\left[V^{\pi'}(s)\right] - \mathbb{E}_{s\sim\rho}[V^{\pi}(s)] = \sum_{s,a} d^{\pi}_{\rho}(s) \left(\pi'(a|s) - \pi(a|s)\right) Q^{\pi'}(s,a)$$

Original version:

$$\mathbb{E}_{s\sim\rho}\left[V^{\pi'}(s)\right] - \mathbb{E}_{s\sim\rho}\left[V^{\pi}(s)\right] = \sum_{s,a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s)\right) Q^{\pi}(s,a)$$

Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies π' and π in the fixed-horizon setting,

$$\mathbb{E}_{s_{1}\sim\rho}\left[V_{1}^{\pi'}(s_{1})\right] - \mathbb{E}_{s_{1}\sim\rho}\left[V_{1}^{\pi}(s_{1})\right] = \sum_{h=1}^{H}\sum_{s,a} d_{\rho,h}^{\pi'}(s) \left(\pi_{h}'(a|s) - \pi_{h}(a|s)\right) Q_{h}^{\pi}(s,a)$$
$$= \sum_{h=1}^{H}\sum_{s,a} d_{\rho,h}^{\pi'}(s,a) \left(Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)\right)$$

$$\underbrace{d_{\rho,h}^{\pi}(s)}_{\rho,h} \triangleq \mathbb{E}^{\pi}[\mathbb{I}\{s_{h} = s\} \mid s_{1} \sim \rho] = \mathbb{P}^{\pi}(s_{h} = s \mid s_{1} \sim \rho)$$
$$\underbrace{d_{\rho,h}^{\pi}(s,a)}_{h} \triangleq \mathbb{E}^{\pi}[\mathbb{I}\{(s_{h},a_{h}) = (s,a)\} \mid s_{1} \sim \rho] = \mathbb{P}^{\pi}((s_{h},a_{h}) = (s,a) \mid s_{1} \sim \rho)$$

The Meaning of Performance Difference Lemma If \mathcal{R} puts a lot of probability $\mathcal{R}(u|s)$ on an action with large V(s) - O(s,a)

It tells us how credit are assigned to each state/step

The sub-optimality of a policy π :

$$\mathbb{E}_{s\sim\rho}[V^{\star}(s)] - \mathbb{E}_{s\sim\rho}[V^{\pi}(s)]$$

If π is highly sub-optimal, then we can always find

- An (s, a)-pair on the path of π such that 1) $V^{\star}(s) - Q^{\star}(s, a)$ is positive and large
- An (s, a)-pair on the path of π^* such that 2) $Q^{\pi}(s, a) - V^{\pi}(s)$ is positive and large

$$= \sum_{s,a} d_{\rho}^{\pi}(s) \left(\pi^{*}(a|s) - \pi(a|s) \right) Q^{\pi^{*}}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi}(s,a) \left(V^{*}(s) - Q^{*}(s,a) \right)$$

$$= \sum_{s,a} d_{\rho}^{\pi^{*}}(s) \left(\pi^{*}(a|s) - \pi(a|s) \right) Q^{\pi}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi^{*}}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s) \right)$$

Proof (Sketch) of Performance Difference Lemma

Now ficus on calculating
$$\Delta h$$

$$\frac{\pi}{2} = \pi' \text{ for step 1:h}, \quad \pi \text{ for } (h+1):H \quad) \text{ only diversion by picking } a_h \text{ on } Sh, \text{ then follow } \pi \text{ of bornardy}, \\
\pi^{(1)} = \pi' \text{ for step 1:h}, \quad \pi \text{ for } (h+1):H \quad) \text{ only divers in step } h \\
\pi^{(2)} = \pi' \text{ for step 1:(h-1)}, \quad \pi \text{ for } (h+1):H \quad) \text{ only divers in step } h \\
= \pi^{(2)} \left[\sum_{k=1}^{H} r(s_{k}, a_{k}) \middle| s_{1} \sim \rho \right] - \underbrace{\mathbb{E}}^{\pi^{(2)}} \left[\sum_{k=1}^{H} r(s_{k}, a_{k}) \middle| s_{1} \sim \rho \right] \\
= \underbrace{\mathbb{E}}^{\pi^{(2)}} \left[\sum_{k=1}^{H} r(s_{k}, a_{k}) \middle| s_{1} \sim \rho \right] - \underbrace{\mathbb{E}}^{\pi^{(2)}} \left[\sum_{k=1}^{H} r(s_{k}, a_{k}) \middle| s_{1} \sim \rho \right] \\
= \underbrace{\mathbb{E}}_{sh \sim d_{P,h}} \left[\frac{\pi}{a_{h}} \left(\frac{1}{a_{h}} \left(s_{h} \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) - \frac{\pi}{a_{h}} \left(\frac{1}{a_{h}} \left(a_{h} \middle| s_{h} \right) - \frac{\pi}{a_{h}} \left(\frac{\pi}{a_{h}} \left(a_{h} \middle| s_{h} \right) \right) \right) \right] \\
= \sum_{s_{h}, a_{h}} d_{P,h}^{\pi'} \left(s_{h} \left(s_{h} \right) \left(\frac{\pi}{a_{h}} \left(a_{h} \middle| s_{h} \right) - \pi(a_{h} \middle| s_{h}) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \right] \\
= \sum_{s_{h}, a_{h}} d_{P,h}^{\pi'} \left(s_{h} \left(s_{h} \right) \left(\frac{\pi}{a_{h}} \left(a_{h} \middle| s_{h} \right) - \pi(a_{h} \middle| s_{h}) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \right] \\
= \sum_{s_{h}, a_{h}} d_{P,h}^{\pi'} \left(s_{h} \left(s_{h} \right) \left(\frac{\pi}{a_{h}} \left(a_{h} \middle| s_{h} \right) - \pi(a_{h} \middle| s_{h}) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \left(\frac{\pi}{a_{h}} \left(s_{h} \right) \right) \left(\frac{\pi}{a_{h}} \left(s$$

Unanswered Question 1

Suboptimality $\leq (1 - \gamma)^{-1}$ Value Error Let $f: S \times A \rightarrow \mathbb{R}$ be **any** function lf $|f(s,a) - Q^*(s,a)| \le \epsilon \quad \forall s,a$ then $V^{\star}(s) - V^{\pi_f}(s) \leq \frac{2\epsilon}{1-\nu} \quad \forall s$ where $\pi_f(s) = \operatorname{argmax} f(s, a)$ а

$$\begin{split} \sum_{a} \left(\chi^{\dagger}(x|s) - \chi_{f}(x|s) \right) f(s,x) \\ &= \sum_{a} \chi^{\dagger}(x|s) - \chi_{f}(x|s) \int f(s,x) - \max_{a} \chi^{\dagger}(s,x) \leq O \\ &= \sum_{s \neq \rho} \left(\int \chi^{t}(s) \right) = \sum_{s, \mu} \int \int g_{\rho}(s) \left(\chi^{t}(x|s) - \chi_{f}(x|s) \right) \int \int g_{\rho}(s,x) \int g_{\rho}(s,x) \\ &= \sum_{s \neq \rho} \int \int g_{\rho}(s) \left(\chi^{t}(x|s) - \chi_{f}(x|s) \right) \int \int \int g_{\rho}(s,x) \int$$

$$\pi_{i} = \pi_{i-1}$$

$$\Rightarrow \pi_{i}(s) = \underset{a}{\operatorname{argmax}} Q^{\pi_{i}}(s, a)$$

$$\Rightarrow Q^{\pi_{i}}(s, a) = R(s, a) + \gamma \sum_{s', a'} P(s'|s, a) \pi_{i}(a'|s') Q^{\pi_{i}}(s', a') = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^{\pi_{i}}(s', a')$$

 $\Rightarrow Q^{\pi_i} \text{ satisfies the Bellman optimality equation}$ $\Rightarrow \text{BellmanError}(Q^{\pi_i}) = 0$

$$\Rightarrow Q^{\pi_i}(s, a) = Q^*(s, a) \text{ by the "ValueError} \le \frac{1}{1 - \gamma} \text{ BellmanError" lemma on Page 38}$$
$$\Rightarrow \pi_i(s) = \operatorname*{argmax}_a Q^*(s, a) = \pi^*(s).$$

Recap: MDP

- Definitions of $Q^{\pi}(s, a), V^{\pi}(s), Q^{\star}(s, a), V^{\star}(s)$
- Bellman equations (related to dynamic programming)
- Value Iteration to approximate $Q^{\pi}(s, a)/V^{\pi}(s)$ or $Q^{*}(s, a)/V^{*}(s)$
- Policy Iteration to find π^* --- involving $Q^{\pi}(s, a)/V^{\pi}(s)$ approximation
- Unified by Generalized Policy Iteration
- Performance difference lemma to decompose $\mathbb{E}_{s \sim \rho} \left[V^{\pi'}(s) \right] \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right]$
 - Credit assignment
 - = $\sum_{s,a} d^{\pi}_{\rho}(s,a) \left(V^{\pi'}(s) Q^{\pi'}(s,a) \right)$ (helpful in analyzing VI by letting $\pi' = \pi^*$)
 - = $\sum_{s,a} d_{\rho}^{\pi'}(s,a) \left(Q^{\pi}(s,a) V^{\pi}(s)\right)$ (helpful in analyzing PI by letting $\pi' = \pi_{i+1}$)

Next

- Our discussion indicates there are two potential ways to find optimal policy
 - Value-Iteration-based: approximate $\hat{Q}(s, a) \approx Q^{\star}(s, a)$ and let $\hat{\pi}(s) = \operatorname{argmax} \hat{Q}(s, a)$
 - Policy-Iteration-based: approximate $\hat{Q}(s, a) \approx Q^{\pi}(s, a)$ and let $\hat{\pi}(s) = \operatorname{argmax} \hat{Q}(s, a)$
 - ... or something in between (based on generalized policy iteration)
- RL algorithms we will discuss:
 - Performing approximate VI or PI using samples