
Markov Decision Processes
Chen-Yu Wei



Sequence of Actions

To win the game, the learner has to take a sequence of actions 𝑎1 → 𝑎2 → ⋯ → 𝑎𝐻.

The effect of a particular action may not be revealed instantaneously. 

● Some effect may be revealed instantaneously

● Some may be revealed later



Sequence of Actions

state

(a summary of the current status in a multi-stage game)



Interaction Protocol (Episodic Setting)

For episode 𝑡 = 1, 2, … , 𝑇: 

      ℎ ← 1

      Environment generates initial state 𝑠𝑡,1

      While episode 𝑡 has not ended:     

            Learner chooses an action 𝑎𝑡,ℎ 

            Learner observes instantaneous reward 𝑟𝑡,ℎ with 𝔼 𝑟𝑡,ℎ = 𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

            Environment generates next state 𝑠𝑡,ℎ+1 ∼ 𝑃 ⋅ 𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

            ℎ ← ℎ + 1

Goal:  maximize ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

Markov assumption: 

𝑟𝑡,ℎ and 𝑠𝑡,ℎ+1 are conditionally independent 

of (𝑠𝑡,1, 𝑎𝑡,1, … , 𝑠𝑡,ℎ−1, 𝑎𝑡,ℎ−1) given 𝑠𝑡,ℎ



From Observations to States

Stacking recent observations Hidden Markov modelRecurrent neural network



Regret (Episodic Setting)

Regret =  − ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

Benchmark

max
𝜋⋆

 𝔼𝜋⋆
෍

𝑡=1

𝑇

෍

ℎ=1

෤𝜏𝑡

𝑅( ǁ𝑠𝑡,ℎ , 𝜋⋆( ǁ𝑠𝑡,ℎ))

𝑠𝑡,1

ǁ𝑠𝑡,2 ǁ𝑠𝑡,෤𝜏𝑡ǁ𝑠𝑡,3

𝑠𝑡,2 𝑠𝑡,3 𝑠𝑡,𝜏𝑡

……

…

𝜋⋆(𝑠𝑡,1)
𝜋⋆( ǁ𝑠𝑡,2) 𝜋⋆( ǁ𝑠𝑡,3)

𝑎𝑡,1

𝑎𝑡,2 𝑎𝑡,3

Trajectory generated by 𝜋⋆

Trajectory generated by learner 



Example: Racing

● A robot car wants to travel far, quickly

● Three states: Cool, Warm, Overheated

● Two actions: Slow, Fast

● Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Example: Racing

𝑠 𝑎 𝑠′ 𝑃(𝑠′|𝑠, 𝑎) 𝑅(𝑠, 𝑎) 

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0



Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon (Goal-Oriented) 

● Infinite-Horizon

● Performance Metric

● Total Reward

● Average Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy

Horizon = Length of an episode



Interaction Protocols (1/3):  Fixed-Horizon

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

While 𝒉 ≤ 𝑯:

      Choose action 𝑎ℎ 

      Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

      Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

Horizon length is a fixed number 𝐻

Examples:  games with a fixed number of time 



Interaction Protocols (2/3):  Goal-Oriented

The learner interacts with the environment until reaching terminal states 𝒯 ⊂ 𝒮

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

While 𝑠ℎ ∉ 𝒯:

      Choose action 𝑎ℎ 

      Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

      Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

      ℎ ← ℎ + 1

Examples:  video games, robotics tasks, personalized recommendations, etc.



Interaction Protocols (3/3):  Infinite-Horizon

The learner continuously interacts with the environment

Examples:  network management, inventory management

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

Loop forever:

      Choose action 𝑎ℎ 

      Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

      Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

      ℎ ← ℎ + 1



Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon (Goal-Oriented) 

● Infinite-Horizon

● Performance Metric

● Total Reward

● Average Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy



Performance Metric

Total Reward (for episodic setting):   ෍

ℎ=1

𝜏

𝑟ℎ (𝜏: the step where the episode ends)  

Average Reward (for infinite-horizon setting): lim
𝐻→∞

1

𝐻
 ෍

ℎ=1

𝐻

𝑟ℎ

Discounted Total Reward (for episodic or infinite-horizon): ෍

ℎ=1

𝜏

𝛾ℎ−1𝑟ℎ

𝜏: the step where the episode ends, or ∞ in the infinite-horizon case  

𝛾 ∈ [0,1):  discount factor



Interaction Protocols vs. Performance Metrics

Goal-Oriented 

Infinite-horizon

Total Reward

Average Reward

Discounted Total Reward?
Focusing more on the recent reward

Fixed-Horizon Total Reward

“natural” objective 

Could be unbounded

Could have constant change for an 
infinitesimal change in policy

There is a potential mismatch between our ultimate goal and what we optimized. 



Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon (Goal-Oriented) 

● Infinite-Horizon

● Performance Metric

● Total Reward

● Average Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy



Policy for MDPs

Markov Policy

Stationary Policy

𝑎ℎ ∼  𝜋ℎ ⋅ | 𝑠ℎ

𝑎ℎ =  𝜋ℎ 𝑠ℎ

𝑎ℎ ∼  𝜋 ⋅ | 𝑠ℎ

𝑎ℎ =  𝜋 𝑠ℎ

For fixed-horizon setting, there exists an 
optimal policy in this class

For infinite-horizon/goal-oriented settings, 
there exists an optimal policy in this class



A stationary policy specifies

𝜋 Slow Cool) 

𝜋 Fast Cool) 

𝜋 Slow Warm) 

𝜋 Fast Warm) 

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10

A Markov policy specifies

𝜋ℎ Slow Cool) 

𝜋ℎ Fast Cool) 

𝜋ℎ Slow Warm) 

𝜋ℎ Fast Warm) 

∀ℎ 



Value Iteration
(Fixed-Horizon)



Two Tasks

Policy Evaluation:   Calculate the expected total reward of a given policy 

What is the expected total reward for the policy 𝜋 cool = fast, 𝜋 warm = slow? 

Policy Optimization:   Find the best policy

What is the policy that achieves the highest expected total reward? 

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Value Iteration for Policy Evaluation

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Backward induction: 

𝑉ℎ
𝜋(𝑠) = ෍

𝑎

𝜋ℎ 𝑎 𝑠 𝑄ℎ
𝜋(𝑠, 𝑎)

Expected total reward 
of 𝜋 from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻, … 1:      for all 𝑠, 𝑎

𝑄ℎ
𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
𝜋 (𝑠′)

𝑉𝐻+1
𝜋 𝑠 = 0 ∀𝑠

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ, 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
𝜋 𝑠 = 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠



Bellman Equation

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎  𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋ℎ+1 𝑎′ 𝑠′ 𝑄ℎ+1
𝜋 (𝑠′, 𝑎′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎  𝑠) 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

or

or

𝑄ℎ
𝜋 is called “the state-action value functions of policy 𝜋”

𝑉ℎ
𝜋 is called “the state value function of policy 𝜋”

Both can be just called “value functions”



Value Iteration for Policy Optimization

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Backward induction: 

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

Expected optimal total 
reward from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻, … 1:      for all 𝑠, 𝑎

𝑄ℎ
⋆(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
⋆ (𝑠′)

𝑉𝐻+1
⋆ 𝑠 = 0 ∀𝑠

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = max

𝜋∈Π𝑀

 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ, 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
⋆ 𝑠 = max

𝜋∈Π𝑀

 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠



Assume 𝐻 = 3

𝑠 𝑎 𝑠′ 𝑃 𝑠’ 𝑠, 𝑎  𝑅(𝑠, 𝑎) 

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

Exercise

𝑽𝟑
⋆ (𝒔)

𝑸𝟑
⋆ (𝒔, 𝒂)

𝑄3
⋆(cool, slow)

𝑄3
⋆(cool, fast)

𝑄3
⋆(warm, slow)

𝑄3
⋆(warm, fast)

𝑉3
⋆(cool)

𝑉3
⋆(warm)

𝑸𝟐
⋆ (𝒔, 𝒂)

𝑄2
⋆(cool, slow)

𝑄2
⋆(cool, fast)

𝑄2
⋆(warm, slow)

𝑄2
⋆(warm, fast)

𝑽𝟐
⋆ (𝒔)

𝑉2
⋆(cool)

𝑉2
⋆(warm)



Bellman Optimality Equation

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′ 

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄ℎ+1
⋆ (𝑠′, 𝑎′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

or

or

𝑄ℎ
⋆ : optimal state-action value functions 

𝑉ℎ
⋆ : optimal state value functions

or “optimal value functions”



Recall:  Regret 

Regret =  − ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)max
𝜋⋆

 𝔼𝜋⋆
෍

𝑡=1

𝑇

෍

ℎ=1

෤𝜏𝑡

𝑅( ǁ𝑠𝑡,ℎ , 𝜋⋆( ǁ𝑠𝑡,ℎ))

𝔼 Regret =  𝔼 ෍

𝑡=1

𝑇

𝑉1
⋆ 𝑠𝑡,1 − 𝑉1

𝜋𝑡(𝑠𝑡,1)

=  𝔼 ෍

𝑡=1

𝑇

𝑉1
⋆ 𝜌 − 𝑉1

𝜋𝑡(𝜌) 𝑉1
𝜋 𝜌 ≜ 𝔼𝑠∼𝜌 𝑉1

𝜋(𝑠)



Value Iteration
(Discounted Variable-Horizon)



Value Iteration for Policy Evaluation

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

𝑉𝑖
𝜋(𝑠) = ෍

𝑎

𝜋 𝑎 𝑠 𝑄𝑖
𝜋(𝑠, 𝑎)

… …

ℎ = 1 ℎ = 2

states

𝑠

…

ℎ = 3

…

…

For 𝑖 = 1, 2, 3, …:      for all 𝑠, 𝑎

𝑄𝑖
𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
𝜋 (𝑠′)

𝑄𝑖
𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉𝑖
𝜋 𝑠 = 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ, 𝑎ℎ)  𝑠1 = 𝑠

𝑉0
𝜋 𝑠 = 0 ∀𝑠

1 𝛾 𝛾2weight

𝑄𝜋 𝑠, 𝑎 = 𝑄∞
𝜋 (𝑠, 𝑎) 𝑉𝜋 𝑠 = 𝑉∞

𝜋(𝑠)

If  𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝑖−1

𝜋 (𝑠, 𝑎) ≤ 𝜖 for all 𝑠, 𝑎:  terminate





Bellman Equation

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎  𝑠)𝑄𝜋(𝑠, 𝑎)

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑄𝜋(𝑠′, 𝑎′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎  𝑠) 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

or

or



Convergence

2. When it terminates, it holds that

1. Value Iteration for policy evaluation will terminate. 

𝑄𝑖
𝜋(𝑠, 𝑎) − 𝑄𝜋(𝑠, 𝑎) ≤

𝜖

1 − 𝛾
 ∀𝑠, 𝑎 



Convergence

2. When it terminates, it holds that

1. Value Iteration for policy evaluation will terminate. 

𝑄𝑖
𝜋(𝑠, 𝑎) − 𝑄𝜋(𝑠, 𝑎) ≤

𝜖

1 − 𝛾
 ∀𝑠, 𝑎 

Proof strategy:  

1) Prove that VI will terminate (i.e., max
𝑠,𝑎

𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝑖−1

𝜋 (𝑠, 𝑎) ≤ 𝜖 will eventually holds)

2) At termination,  

BellmanError 𝑄𝑖
𝜋 = max

𝑠,𝑎
𝑄𝑖

𝜋 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑄𝑖
𝜋(𝑠′, 𝑎′) ≤ 𝜖

3) Use the Value error ≤ 𝟏 − 𝜸 −𝟏 Bellmen Error lemma to claim 

𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝜋(𝑠, 𝑎) ≤

𝜖

1 − 𝛾
.



Convergence (A More General Statement of 2.)

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function (not necessarily generated by Value Iteration)  

𝑓 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑓(𝑠′, 𝑎′) ≤ 𝜖 ∀𝑠, 𝑎

If

then 

𝑓 𝑠, 𝑎 − 𝑄𝜋(𝑠, 𝑎) ≤
𝜖

1 − 𝛾
 ∀𝑠, 𝑎

Value error ≤ 𝟏 − 𝜸 −𝟏 Bellmen Error





Value Iteration for Policy Optimization

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

𝑉𝑖
⋆ 𝑠 = max

𝑎
 𝑄𝑖

⋆(𝑠, 𝑎)

… …

ℎ = 1 ℎ = 2

states

𝑠

…

ℎ = 3

…

…

For 𝑖 = 1, 2, 3, …:      for all 𝑠, 𝑎

𝑄𝑖
⋆(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
⋆ (𝑠′)

𝑄𝑖
⋆ 𝑠, 𝑎 = max

𝜋
 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ, 𝑎ℎ) 𝑠0, 𝑎0 = (𝑠, 𝑎)

𝑉𝑖
⋆ 𝑠 = max

𝜋
 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ, 𝑎ℎ)  𝑠0 = 𝑠

𝑉0
⋆ 𝑠 = 0 ∀𝑠

1 𝛾 𝛾2

𝑄⋆ 𝑠, 𝑎 = 𝑄∞
⋆ (𝑠, 𝑎) 𝑉⋆ 𝑠 = 𝑉∞

⋆(𝑠)

weight

If  𝑄𝑖
⋆ 𝑠, 𝑎 − 𝑄𝑖−1

⋆ (𝑠, 𝑎) ≤ 𝜖 for all 𝑠, 𝑎 :  terminate



Bellman Optimality Equation

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′ 

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄⋆(𝑠′, 𝑎′)

𝑉⋆ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

or

or

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎)



Convergence

2. When it terminates, it holds that

1. Value Iteration for policy optimization will terminate. 

𝑄𝑖
⋆(𝑠, 𝑎) − 𝑄⋆(𝑠, 𝑎) ≤

𝜖

1 − 𝛾
 ∀𝑠, 𝑎

3. When it terminates, it holds that

𝑉⋆ 𝑠 − 𝑉ෝ𝜋 𝑠 ≤
2𝜖

1 − 𝛾 2  ∀𝑠

where ො𝜋 𝑠 = argmax
𝑎

 𝑄𝑖
⋆(𝑠, 𝑎) 



Convergence (A More General Statement of 2.)

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function (not necessarily generated by Value Iteration)  

𝑓 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′ 

𝑃 𝑠′ 𝑠, 𝑎  max
𝑎′

 𝑓(𝑠′, 𝑎′) ≤ 𝜖 ∀𝑠, 𝑎

If

then 

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎) ≤
𝜖

1 − 𝛾
 ∀𝑠, 𝑎

Value error ≤ 𝟏 − 𝜸 −𝟏 Bellmen Error



Convergence (A More General Statement of 3.)

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function (not necessarily generated by Value Iteration)  

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎) ≤ 𝜖 ∀𝑠, 𝑎
If

then 

𝑉⋆ 𝑠 − 𝑉𝜋𝑓 𝑠 ≤
2𝜖

1 − 𝛾
 ∀𝑠

Suboptimality ≤ 𝟏 − 𝜸 −𝟏 Value Error

where 𝜋𝑓 𝑠 = argmax
𝑎

 𝑓(𝑠, 𝑎)  





Summary (Fixed Horizon)

𝑄ℎ
𝜋 𝑠, 𝑎 ≜ 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ, 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
𝜋 𝑠 ≜ 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠

𝑄ℎ
⋆ 𝑠, 𝑎 ≜ max

𝜋
 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ, 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
⋆ 𝑠 ≜ max

𝜋
 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠

Definitions

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎  𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

Relations (Bellman Equations) Calculation (VI)

Calculate 

𝑄ℎ
𝜋 𝑠, 𝑎 , 𝑉ℎ

𝜋 𝑠  ∀𝑠, 𝑎 

from ℎ = 𝐻 to ℎ = 1

Calculate 

𝑄ℎ
⋆ 𝑠, 𝑎 , 𝑉ℎ

⋆ 𝑠  ∀𝑠, 𝑎 

from ℎ = 𝐻 to ℎ = 1



Summary (Discounted Variable Horizon)

Definitions

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎  𝑠)𝑄𝜋(𝑠, 𝑎)

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

Relations (Bellman Equations) Calculation (VI)

Calculate 

𝑄𝑖
𝜋 𝑠, 𝑎 , 𝑉𝑖

𝜋 𝑠  ∀𝑠, 𝑎 

for 𝑖 = 1, 2, …

until convergence

Calculate 

𝑄𝑖
⋆ 𝑠, 𝑎 , 𝑉𝑖

⋆ 𝑠  ∀𝑠, 𝑎 

for 𝑖 = 1, 2, …

until convergence

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ, 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉𝜋 𝑠 = 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ, 𝑎ℎ)  𝑠1 = 𝑠

𝑄⋆ 𝑠, 𝑎 = max
𝜋

 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉⋆ 𝑠 = max
𝜋

 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ, 𝑎ℎ)  𝑠1 = 𝑠



Policy Iteration



Policy Iteration

Policy Iteration

For 𝑖 = 1, 2, … 

∀𝑠,  𝜋𝑖 𝑠  ← argmax
𝑎

 𝑄𝜋𝑖−1(𝑠, 𝑎)

Theorem (monotonic improvement).  Policy Iteration ensures

∀𝑠, 𝑎, 𝑄𝜋𝑖 𝑠, 𝑎 ≥ 𝑄𝜋𝑖−1 𝑠, 𝑎

(We will prove this later.)

When converged (i.e., 𝜋𝑖 = 𝜋𝑖−1),  we have 𝜋𝑖 = 𝜋⋆. 



Generalized Policy Iteration

For 𝑖 = 1, 2, …  

𝜋𝑖(𝑠) = max
𝑎

 𝑄𝑖(𝑠, 𝑎)

𝑄(𝑠, 𝑎) ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋𝑖 𝑎′ 𝑠′ 𝑄(𝑠′, 𝑎′)

Repeat for 𝑁 times:  

𝑄 ← 𝑄𝑖

𝑄𝑖+1 ← 𝑄

Policy update

Value update

𝑁 = 1 ⇒ Value Iteration for policy optimization

𝑁 = ∞ ⇒ Policy Iteration

Notice:  in value iteration for PO, there may not exist a policy 𝜋 such that 𝑄𝑖 = 𝑄𝜋

In contrast,  in policy iteration we have 𝑄𝑖 = 𝑄𝜋𝑖−1

VI for PO can be viewed as PI with incomplete policy evaluation



Summary

● Value Iteration for Policy Optimization (VI for PO)

● Is essentially a dynamic programming algorithm

● Finds the value functions of the optimal policy

● Value Iteration for Policy Evaluation (VI for PE)

● Also a dynamic programming algorithm

● Finds the value functions of the given policy

● Policy Iteration (PI)

● An iterative policy improvement algorithm

● Each iteration involves a policy evaluation subtask

● VI for PO and PI can be viewed as special cases of Generalized PI



Performance Difference Lemma



Unanswered Questions

● For an estimation ෠𝑄 𝑠, 𝑎 ≈ 𝑄⋆(𝑠, 𝑎) with error, how can we bound 

𝑉⋆ 𝜌 − 𝑉ෝ𝜋(𝜌)            where ො𝜋 𝑠 = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)?

● How to show that Policy Iteration leads to monotonic policy improvement? 

● Also, how are these methods related to the third challenge of online RL: 
credit assignment? 



Performance Difference Lemma

For any two stationary policies 𝜋′ and 𝜋 in the discounted setting, 

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

𝑑𝜌
𝜋 𝑠, 𝑎 ≜  𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝕀 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎)  𝑠1 ∼ 𝜌

𝑑𝜌
𝜋 𝑠 ≜  𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝕀 𝑠ℎ = 𝑠  𝑠1 ∼ 𝜌 Discounted occupancy measure on state 𝑠



Performance Difference Lemma

We can also swap the roles of 𝜋′ and 𝜋 and apply the same lemma 

𝔼𝑠∼𝜌 𝑉𝜋 𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋 𝑎 𝑠 − 𝜋′ 𝑎 𝑠 𝑄𝜋′

(𝑠, 𝑎)

⇒  𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋′

(𝑠, 𝑎)
× (−1)

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

Original version: 

=



Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies 𝜋′ and 𝜋 in the fixed-horizon setting, 

𝔼𝑠1∼𝜌 𝑉1
𝜋′

𝑠1 − 𝔼𝑠1∼𝜌 𝑉1
𝜋 𝑠1 = ෍

ℎ=1

𝐻

෍

𝑠,𝑎

𝑑𝜌,ℎ
𝜋′

𝑠 𝜋ℎ
′ 𝑎 𝑠 − 𝜋ℎ 𝑎 𝑠 𝑄ℎ

𝜋(𝑠, 𝑎)

= ෍

ℎ=1

𝐻

෍

𝑠,𝑎

𝑑𝜌,ℎ
𝜋′

𝑠, 𝑎 𝑄ℎ
𝜋(𝑠, 𝑎) − 𝑉ℎ

𝜋(𝑠)  

𝑑𝜌,ℎ
𝜋 𝑠 ≜  𝔼𝜋 𝕀 𝑠ℎ = 𝑠  | 𝑠1 ∼ 𝜌 = ℙ𝜋 𝑠ℎ = 𝑠 𝑠1 ∼ 𝜌)

𝑑𝜌,ℎ
𝜋 𝑠, 𝑎 ≜  𝔼𝜋 𝕀 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎)  | 𝑠1 ∼ 𝜌 = ℙ𝜋 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎) 𝑠1 ∼ 𝜌)



The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step

The sub-optimality of a policy 𝜋:

𝔼𝑠∼𝜌 𝑉⋆ 𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋⋆

(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠, 𝑎 𝑉⋆(𝑠) − 𝑄⋆(𝑠, 𝑎)

If 𝜋 is highly sub-optimal, then we can always 

find 

1) An 𝑠, 𝑎 -pair on the path of 𝜋 such that 

𝑉⋆ 𝑠 − 𝑄⋆ 𝑠, 𝑎  is positive and large

2) An 𝑠, 𝑎 -pair on the path of 𝜋⋆ such that 

𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠  is positive and large

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)



A game tree for the ‘X’ player, where 

the ‘O’ player always plays in the 

first available cell (from left to right, 

top to bottom).

𝑉⋆ 𝑠 =?   𝑄⋆ 𝑠, 𝑎 =?

0

+1 +1

0

+1

+1

-1

+1

+1

+1

-1 -1 -1

-1

+1

+1

+1

-1 -1 -1 -1

+1 +1

+1

+1
0

+1 -1
+1

+1 -1
-1

-1 +1
-1

-1 +1
-1

-1

+1
+1 -1

+1
+1



A game tree for the ‘X’ player, where 

the ‘O’ player always plays in the 

first available cell (from left to right, 

top to bottom).
𝑉𝜋 𝑠 =?   𝑄𝜋 𝑠, 𝑎 =?

Let 𝜋 be a policy of the ‘X’ player 

that always plays the last available 

cell. 

0

+1 +1

0

+1

+1

-1

+1

+1

+1

-1 -1 -1

-1

+1

+1

+1

-1 -1 -1 -1

-1 -1

-1

+1
0

+1 -1
+1

+1 -1
-1

-1 +1
-1

-1 +1
-1

-1

+1
+1 -1

-1
-1



Proof (Sketch) of Performance Difference Lemma







Unanswered Question 1

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎) ≤ 𝜖 ∀𝑠, 𝑎
If

then 

𝑉⋆ 𝑠 − 𝑉𝜋𝑓 𝑠 ≤
2𝜖

1 − 𝛾
 ∀𝑠

Suboptimality ≤ 𝟏 − 𝜸 −𝟏 Value Error

where 𝜋𝑓 𝑠 = argmax
𝑎

 𝑓(𝑠, 𝑎)  





Unanswered Question 2

Policy Iteration ensures

∀𝑠, 𝑎, 𝑄𝜋𝑖 𝑠, 𝑎 ≥ 𝑄𝜋𝑖−1 𝑠, 𝑎

When converged (i.e., 𝜋𝑖 = 𝜋𝑖−1),  we have 𝜋𝑖 = 𝜋⋆. 





Recap: MDP

● Definitions of 𝑄𝜋 𝑠, 𝑎 , 𝑉𝜋 𝑠 , 𝑄⋆ 𝑠, 𝑎 , 𝑉⋆(𝑠)

● Bellman equations (related to dynamic programming)

● Value Iteration to approximate 𝑄𝜋 𝑠, 𝑎 /𝑉𝜋(𝑠) or 𝑄⋆ 𝑠, 𝑎 /𝑉⋆(𝑠) 

● Policy Iteration to find 𝜋⋆ --- involving 𝑄𝜋 𝑠, 𝑎 /𝑉𝜋(𝑠) approximation 

● Unified by Generalized Policy Iteration

● Performance difference lemma to decompose 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠

● Credit assignment

● = σ𝑠,𝑎 𝑑𝜌
𝜋 𝑠, 𝑎 𝑉𝜋′

(𝑠) − 𝑄𝜋′
(𝑠, 𝑎)     (helpful in analyzing VI by letting 𝜋′ = 𝜋⋆)

● = σ𝑠,𝑎 𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋(𝑠)     (helpful in analyzing PI by letting 𝜋′ = 𝜋𝑖+1)



Next

● Our discussion indicates there are two potential ways to find optimal policy

● Value-Iteration-based:  approximate ෠𝑄 𝑠, 𝑎 ≈ 𝑄⋆(𝑠, 𝑎) and let ො𝜋(𝑠) = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)

● Policy-Iteration-based:  approximate ෠𝑄 𝑠, 𝑎 ≈ 𝑄𝜋(𝑠, 𝑎) and let ො𝜋(𝑠) = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)

● … or something in between (based on generalized policy iteration)

● RL algorithms we will discuss: 

● Performing approximate VI or PI using samples


	Slide 1: Markov Decision Processes
	Slide 2: Sequence of Actions
	Slide 3: Sequence of Actions
	Slide 4: Interaction Protocol (Episodic Setting)
	Slide 5: From Observations to States
	Slide 6: Regret (Episodic Setting)
	Slide 7: Example: Racing
	Slide 8: Example: Racing
	Slide 9: Formulations
	Slide 10: Interaction Protocols (1/3):  Fixed-Horizon
	Slide 11: Interaction Protocols (2/3):  Goal-Oriented
	Slide 12: Interaction Protocols (3/3):  Infinite-Horizon
	Slide 13: Formulations
	Slide 14: Performance Metric
	Slide 15: Interaction Protocols vs. Performance Metrics
	Slide 16: Formulations
	Slide 17: Policy for MDPs
	Slide 18
	Slide 19: Value Iteration (Fixed-Horizon)
	Slide 20: Two Tasks
	Slide 21: Value Iteration for Policy Evaluation
	Slide 22: Bellman Equation
	Slide 23: Value Iteration for Policy Optimization
	Slide 24: Exercise
	Slide 25: Bellman Optimality Equation
	Slide 26: Recall:  Regret 
	Slide 27: Value Iteration (Discounted Variable-Horizon)
	Slide 28: Value Iteration for Policy Evaluation
	Slide 29
	Slide 30: Bellman Equation
	Slide 31: Convergence
	Slide 32: Convergence
	Slide 33: Convergence (A More General Statement of 2.)
	Slide 34
	Slide 35: Value Iteration for Policy Optimization
	Slide 36: Bellman Optimality Equation
	Slide 37: Convergence
	Slide 38: Convergence (A More General Statement of 2.)
	Slide 39: Convergence (A More General Statement of 3.)
	Slide 40
	Slide 41: Summary (Fixed Horizon)
	Slide 42: Summary (Discounted Variable Horizon)
	Slide 43: Policy Iteration
	Slide 44: Policy Iteration
	Slide 45: Generalized Policy Iteration
	Slide 46: Summary
	Slide 47: Performance Difference Lemma
	Slide 48: Unanswered Questions
	Slide 49: Performance Difference Lemma
	Slide 50: Performance Difference Lemma
	Slide 51: Performance Difference Lemma (Fixed-Horizon)
	Slide 52: The Meaning of Performance Difference Lemma
	Slide 53
	Slide 54
	Slide 55: Proof (Sketch) of Performance Difference Lemma
	Slide 56
	Slide 57
	Slide 58: Unanswered Question 1
	Slide 59
	Slide 60: Unanswered Question 2
	Slide 61
	Slide 62: Recap: MDP
	Slide 63: Next

