
Summary
Chen-Yu Wei

What is Reinforcement Learning?

● Learning to act from reward feedback?

● Learning to make sequential decisions?

After this course, there should be a deeper understanding about it — RL (or this

course) is just “supervised” learning techniques with partial feedback (or

weaker supervision).

Full-information learning w/o

long-term effect

Full-information learning with

long-term effect

Bandit-information learning w/o

long-term effect

Bandit-information learning with

long-term effect

Need exploration

Need exploration & credit assignment

Classification on Full-Information Long-Term Problems

The training data has already

done credit assignment
The learner still has to

perform credit assignment.

⇒ Can just imitate the expert

(Car driving)

⇒ 1. Full-information VI/PI (might be

computationally infeasible)

2. Approximate VI/PI (RL)

Full-information about

𝑄⋆ 𝑠, 𝑎 ∀𝑎 or argmax
𝑎

 𝑄⋆ 𝑠, 𝑎
Full-information about 𝑃(⋅ |𝑠, 𝑎)

and 𝑅 𝑠, 𝑎 ∀𝑎

Generalization

Exploration
Credit

Assignment

Action space:

▪ EG, BE, IGW

▪ UCB, TS

▪ Inverse weighting and

baseline

▪ One-point unbiased

gradient estimator

Function approximation for functions of states, contexts, or actions

Dynamic programming

▪ (Approximate) value

iteration, policy iteration

▪ Target network

▪ GAE

State space:

▪ UCB, TS

▪ Information-directed

sampling

▪ Several bonus design

Algorithms: EXP3, DQN,

DDQN, PPO, PG, A2C,

DDPG, TD3, SAC,

bootstrapped DQN….

When and How to Use Reinforcement Learning?

● Analyze the problem

● What information do we have in our problem? (full-information or bandit)

● Full-information: argmax
𝑎

 𝑄⋆(𝑠, 𝑎), or 𝑃 ⋅ 𝑠, 𝑎 & 𝑅(𝑠, 𝑎) ?

● Use RL only when needed

● (Useful) supervision signal is bandit in nature

● Problem is too big so we cannot perform full VI/PI

● Integrate it with supervised learning or other machine learning techniques

● There could be multiple sources of supervision signals: full-information and bandit

● Some supervision signal could give a better initialization of VI/PI

Example 1: GAN

Human feedback

Action: fake image

Reward: discriminator output

Do we have access to ∇𝑎𝑟(𝑎𝑡) ? Yes

Do we have access to ∇𝑎𝑟(𝑎𝑡) ? No

Exploration is needed. We may use value-

based or policy-based approaches.

Exploration is not needed.

Example 2. Learning to Trade in a Stock Market

State: All available information

Action: {Sell, Hold, Buy}

Reward: Profit

What information do we have?

Full information (though noisy) about P(s’|s,a) and

R(s,a): we know the consequence of taking a

particular action even if we did not take that action.

Still making sense to use RL techniques, but there is

potential to improve data efficiency:

Value-based method: in replay buffer we may add

(s,a,r,s’) for actions that we did not take before.

Policy-based method: we may be able to evaluate

𝑄𝜋(𝑠, 𝑎) more accurately (less variance) by rolling out

𝜋 from 𝑠, 𝑎 multiple times.

Example 3. Go

State: current placement of the stones

Action: next placement

Reward: win/lose (revealed at the end)

Full information about P(s’|s,a) and R(s,a)

In theory, one can perform VI to find the maximin

policy. But the large state space (3361) disallow us

to do so.

The full knowledge, again, equip the learner with

advantage to repeatedly rolling out trajectories from

a particular state (MCTS).

Also, it makes data from the “real world” very cheap.

Role of RL in “Learning to Act” Problems

Learning to Act

● Reward Maximization Problems: the ultimate goal is to maximize a golden

reward

● Go, Chess

● Driving

● Answering math questions, code generation

● Imitation Problems: the ultimate goal is to behave like human

● Language model

● Household robot

● Image generation

Approaches to Learning to Act

● Reward Maximization Problems: the ultimate goal is to maximize a golden reward

● Reinforcement Learning

● Behavior Cloning (supervised learning with expert demonstration): used a lot in complex

problems like driving, Go

● A common practice: start with BC, and then perform RL

● Imitation Problems: the ultimate goal is to behave like human

● Behavior Cloning

● Distribution matching (GAN, diffusion models)

● Inverse Reinforcement Learning:

1. Infer an MDP such that human behavior appears approximately optimal on it.

2. Perform Reinforcement Learning on the inferred MDP.

For language modeling, “DPO” and “RLHF” correspond to BC and IRL respectively.

Topics We Did Not Cover

Topics We Did Not Cover

● Model-Based RL

● Offline RL

● Reward Design

● Robustness / Sim-to-Real

Model-Based Reinforcement Learning

......
𝒟(1) = (𝑠, 𝑎, 𝑟, 𝑠′) 𝒟(2) 𝒟(𝑘−1)

Planning: Find a good policy using the trained model

𝒟 = 𝒟(1) ∪ ⋯ ∪ 𝒟(𝑘−1)

𝜙𝑘 ← argmin
𝜃

 𝔼 𝑠,𝑎,𝑟,𝑠′ ∼𝒟 𝑄𝜙 𝑠, 𝑎 − 𝑟 − 𝛾max
𝑎′

𝑄𝜙𝑘−1
𝑠′, 𝑎′ 2

Model-free

Model-based

𝑠

𝑎

෠𝑃(⋅ |𝑠, 𝑎)

෠𝑅(𝑠, 𝑎)

Trained with 𝒟

model

Loop: Interact with environment → model training → planning

Offline Reinforcement Learning

● The learner does not interact with the environment, but purely learn from

existing data collected by other policies. After learning, the policy might be

directly deployed.

● Difference with imitation learning: we do not assume the data is from expert.

The goal of offline RL, like online RL, is to maximize reward.

● We do not need to design exploration strategy anymore. But we have to

worry about the consequence of insufficient coverage of data.

● Goal of exploration: to resolve uncertainty.

● In offline RL, uncertainty may not be resolved completely.

● Therefore, we usually avoid uncertainty when outputting policy in offline RL.

Offline Reinforcement Learning

Pessimistic Value Iteration (for offline RL to generate the final policy):

෨𝑄 𝑠, 𝑎 ← ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄 𝑠′, 𝑎′ − Uncertainty of ෠𝑃 ⋅ s, a , ෠𝑅(𝑠, 𝑎)

cf. Optimistic Value Iteration (for online RL to generate the next policy):

෨𝑄 𝑠, 𝑎 ← ෠𝑅 𝑠, 𝑎 + ෍

𝑠′

෠𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 ෨𝑄 𝑠′, 𝑎′ + Uncertainty of ෠𝑃 ⋅ s, a , ෠𝑅(𝑠, 𝑎)

Offline Reinforcement Learning

Generalization

Insufficient

data coverage

Credit

Assignment

Like exploration for online RL, this

is due to bandit information

Reward Design

● Sparse reward: hard for typical RL algorithm to learn

● Reward hacking / misalignment

Robustness / Sim-to-Real

● How to minimize the performance degradation of a simulator-trained agent in
a real environment

Final Reminders

Reminders

● Deadline of submitting final presentation: 11:59pm this Wednesday (April 30)

● Ensure you have access to create video in Panopto (see my previous piazza

announcement)

● From April 30 to May 8

● Please engage in discussion about others / your groups’ presentation on Panopto

● This will give you extra points ranging from 0 to 5.

● Final report: May 5

● Summarize what you have (for works you haven’t done, mention them as future work)

● HW4: May 8

● Course evaluation

	Slide 1: Summary
	Slide 2: What is Reinforcement Learning?
	Slide 3
	Slide 4: Classification on Full-Information Long-Term Problems
	Slide 5
	Slide 6: When and How to Use Reinforcement Learning?
	Slide 7: Example 1: GAN
	Slide 8: Example 2. Learning to Trade in a Stock Market
	Slide 9: Example 3. Go
	Slide 10: Role of RL in “Learning to Act” Problems
	Slide 11: Learning to Act
	Slide 12: Approaches to Learning to Act
	Slide 13: Topics We Did Not Cover
	Slide 14: Topics We Did Not Cover
	Slide 15: Model-Based Reinforcement Learning
	Slide 16: Offline Reinforcement Learning
	Slide 17: Offline Reinforcement Learning
	Slide 18: Offline Reinforcement Learning
	Slide 19: Reward Design
	Slide 20: Robustness / Sim-to-Real
	Slide 21: Final Reminders
	Slide 22: Reminders

