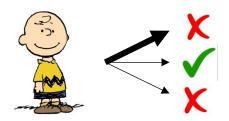
Summary

Chen-Yu Wei

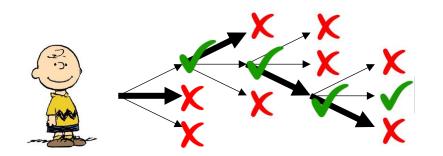
What is Reinforcement Learning?

- Learning to act from reward feedback?
- Learning to make sequential decisions?

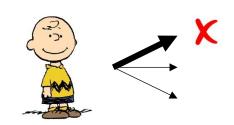
After this course, there should be a deeper understanding about it — RL (or this course) is just "supervised" learning techniques with **partial feedback** (or **weaker supervision**).



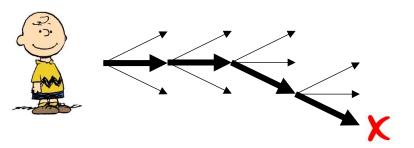
Full-information learning w/o long-term effect



Full-information learning with long-term effect

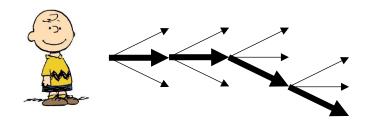


Bandit-information learning w/o long-term effect Need exploration



Bandit-information learning with long-term effect Need exploration & credit assignment

Classification on Full-Information Long-Term Problems



Full-information about $Q^*(s, a) \forall a \text{ or } \underset{a}{\operatorname{argmax}} Q^*(s, a)$

The training data has already done credit assignment

 \Rightarrow Can just imitate the expert (Car driving)

Full-information about $P(\cdot | s, a)$ and $R(s, a) \forall a$

The learner still has to perform credit assignment.

 \Rightarrow 1. Full-information VI/PI (might be computationally infeasible)

2. Approximate VI/PI (RL)

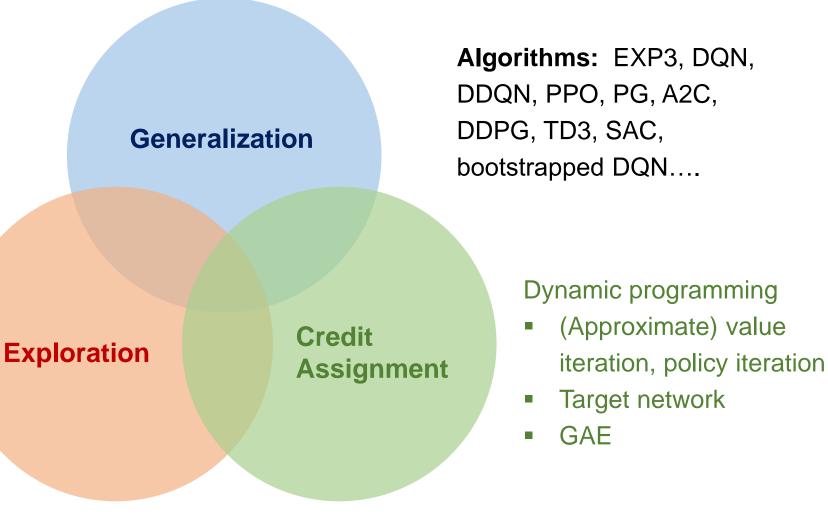
Function approximation for functions of states, contexts, or actions

Action space:

- EG, BE, IGW
- UCB, TS
- Inverse weighting and baseline
- One-point unbiased gradient estimator

State space:

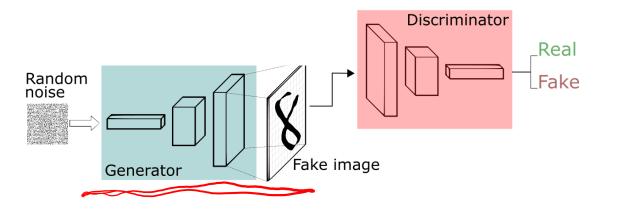
- UCB, TS
- Information-directed sampling
- Several bonus design

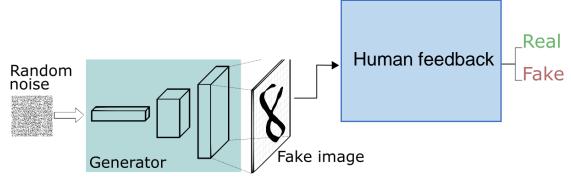


When and How to Use Reinforcement Learning?

- Analyze the problem
 - What information do we have in our problem? (full-information or bandit)
 - Full-information: $\underset{a}{\operatorname{argmax}} Q^*(s, a)$, or $P(\cdot | s, a) \& R(s, a)$?
- Use RL only when needed
 - (Useful) supervision signal is bandit in nature (information consideration)
 - Problem is too big so we cannot perform full VI/PI (computational considere tw)
- Integrate it with supervised learning or other machine learning techniques
 - There could be multiple sources of supervision signals: full-information and bandit
 - Some supervision signal could give a better initialization of VI/PI

Example 1: GAN





Action: fake image Reward: discriminator output

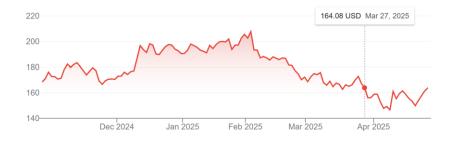
Do we have access to $\nabla_a r(a_t)$? Yes

Exploration is *not* needed.

Do we have access to $\nabla_a r(a_t)$? No

Exploration is needed. We may use valuebased or policy-based approaches.

Example 2. Learning to Trade in a Stock Market



What information do we have?

Full information (though noisy) about P(s'|s,a) and R(s,a): we know the consequence of taking a particular action even if we did not take that action.

 $Q^{*}(5, s)$

Still making sense to use RL techniques, but there is potential to improve **data efficiency**:

Value-based method: in replay buffer we may add (s,a,r,s') for actions that we did not take before.

Policy-based method: we may be able to evaluate $Q^{\pi}(s, a)$ more accurately (less variance) by rolling out π from *s*, *a* multiple times.

State: All available information Action: {Sell, Hold, Buy} Reward: Profit

Example 3. Go

State: current placement of the stones Action: next placement Reward: win/lose (revealed at the end)

Full information about P(s'|s,a) and R(s,a)

In theory, one can perform VI to find the maximin policy. But the large state space (3^{361}) disallow us to do so.

The full knowledge, again, equip the learner with advantage to repeatedly rolling out trajectories from a particular state (MCTS).

Also, it makes data from the "real world" very cheap.

Role of RL in "Learning to Act" Problems

Learning to Act

- Reward Maximization Problems: the ultimate goal is to maximize a golden reward
 - Go, Chess
 - Driving
 - Answering math questions, code generation
- Imitation Problems: the ultimate goal is to behave like human
 - Language model
 - Household robot
 - Image generation

Approaches to Learning to Act

- Reward Maximization Problems: the ultimate goal is to maximize a golden reward
 - Reinforcement Learning
 - Behavior Cloning (supervised learning with expert demonstration): used a lot in complex problems like driving, Go
 - A common practice: start with BC, and then perform RL
- Imitation Problems: the ultimate goal is to behave like human
 - Behavior Cloning
 - Distribution matching (GAN, diffusion models)
 - Inverse Reinforcement Learning:
 - 1. Infer an (MDP) such that human behavior appears approximately optimal on it.
 - 2. Perform *Reinforcement Learning* on the inferred MDP.

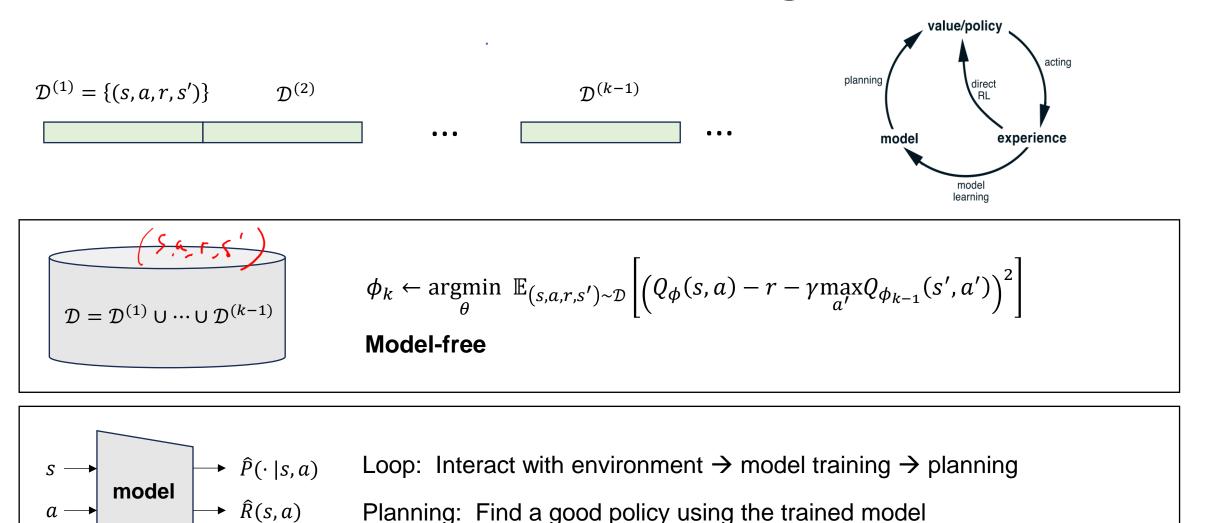
For language modeling, "DPO" and "RLHF" correspond to BC and IRL respectively.

Topics We Did Not Cover

Topics We Did Not Cover

- Model-Based RL
- Offline RL
- Reward Design
- Robustness / Sim-to-Real

Model-Based Reinforcement Learning



Planning: Find a good policy using the trained model

Model-based

Trained with \mathcal{D}

Offline Reinforcement Learning

 $(A, 1) \rightarrow \frac{4}{6}$ $(A, 2) \rightarrow 7$

- The learner does not interact with the environment, but purely learn from existing data collected by other policies. After learning, the policy might be directly deployed.
- Difference with imitation learning: we do not assume the data is from expert. The goal of offline RL, like online RL, is to **maximize reward**.
- We do not need to design exploration strategy anymore. But we have to worry about the consequence of insufficient coverage of data.
 - Goal of exploration: to **resolve uncertainty**.
 - In offline RL, uncertainty may not be resolved completely.
 - Therefore, we usually **avoid uncertainty** when outputting policy in offline RL.

Offline Reinforcement Learning

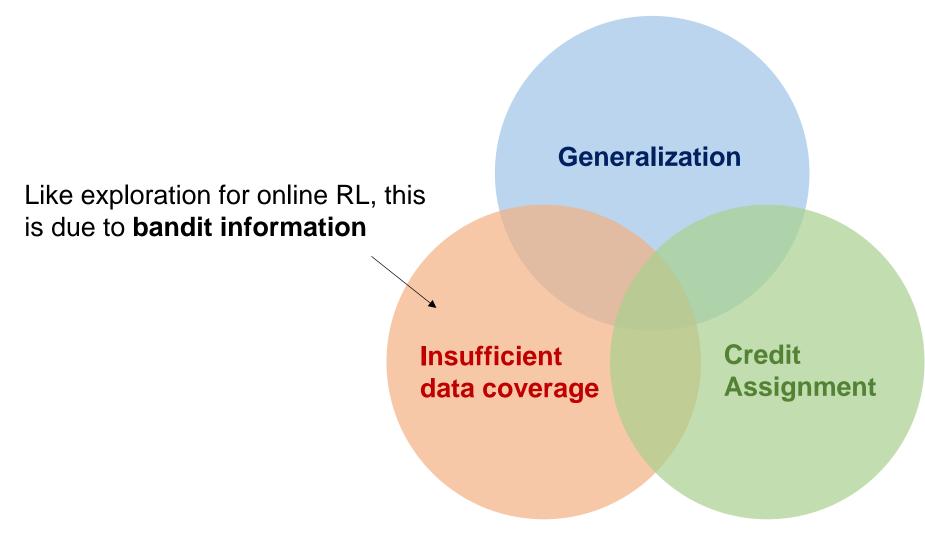
Pessimistic Value Iteration (for offline RL to generate the final policy):

$$\tilde{Q}(s,a) \leftarrow \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}(s',a') - \text{Uncertainty of } \hat{P}(\cdot|s,a), \hat{R}(s,a)$$

cf. Optimistic Value Iteration (for online RL to generate the next policy):

$$\tilde{Q}(s,a) \leftarrow \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}(s',a') + \text{Uncertainty of } \hat{P}(\cdot|s,a), \hat{R}(s,a)$$

Offline Reinforcement Learning

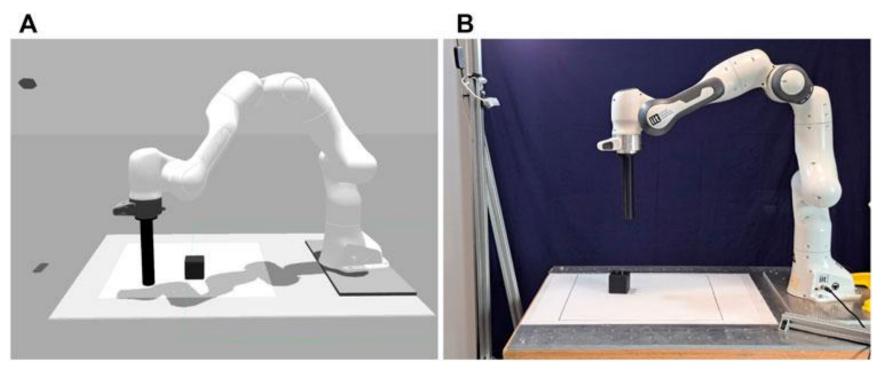


Reward Design

- Sparse reward: hard for typical RL algorithm to learn
- Reward hacking / misalignment

Robustness / Sim-to-Real

• How to minimize the performance degradation of a simulator-trained agent in a real environment



Simulated scenario

Real-world scenario

Final Reminders

Reminders

- Deadline of submitting final presentation: 11:59pm this Wednesday (April 30)
 - Ensure you have access to create video in Panopto (see my previous piazza announcement)
- From April 30 to May 8
 - Please engage in discussion about others / your groups' presentation on Panopto
 - This will give you extra points ranging from 0 to 5.
- Final report: May 5
 - Summarize what you have (for works you haven't done, mention them as future work)
- HW4: May 8
- Course evaluation