Homework 1

4771 Reinforcement Learning (Spring 2026)

Deadline: 11:59pm, February 4, 2026

Instructions:

* Submit one . pdf file and one . py file (not . ipynb) to Gradescope. The . pdf should contain your answers to
the questions, and the . py file should contain your code.

* You may use ISIEX or another editor (e.g., Microsoft Word) to generate the .pdf, as long as it includes the
required information. You may also handwrite your answers and scan them as a .pdf. A I&IEX template is
available at https://www.overleaf.com/read/xxgcmjgptysg#aadbbb.

1 Contextual Bandits with Regression

In this homework, we will implement two exploration strategies for value-based contextual bandits, including e-
greedy (EG) and Boltzmann exploration (BE). The starter code can be accessed at http://bahh723.github.io/
r12026sp_files/bandits.py.

The homework relies on coding with PyTorch. If you have not used it before, a nice tutorial is in https://www.
youtube.com/watch?v=c361UUr864M. It is recommended to watch it at least up to Tutorial #07 (Linear
Regression) to understand everything in the starter code.

1.1 Data

To simulate a contextual bandit environment, we use existing classification dataset for supervised learning. Specifically,
in this homework, we use the mnist dataset with some pruning and modification. Originally, it is a classification dataset
where features are 28 pixel x 28 pixel gray-scale images of digits, and the classes correspond to 10 digits.

1.2 Data Conversion

For simplicity, we trim the dataset so that it only contains 4 classes corresponding to digits ‘0’, ‘1°, ‘2°, and ‘3’, each
having 2500 samples, summing up to 10000 samples. In each round, the environment will reveal the image x; (context),
and the learner has to pick one of the classes a; (action). The learner interacts with the environment for 7" = 10000
rounds. We artificially make the reward function switch once in the middle: For ¢ < 5000 (Phase 1), the reward function
is the following:

0.5 if a is the correct digit of image x
R(z,a) =

0 otherwise
For ¢t > 5000 (Phase 2), the reward is the following:

0.5 if ais the correct digit of image x
R(z,a) =41 if (a — 1) mod 4 is the is the correct digit of image «

0 otherwise


https://www.overleaf.com/read/xxqcmjgptysq#aa4bb6
http://bahh723.github.io/rl2026sp_files/bandits.py
http://bahh723.github.io/rl2026sp_files/bandits.py
https://www.youtube.com/watch?v=c36lUUr864M
https://www.youtube.com/watch?v=c36lUUr864M
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
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For example, in Phase 2, if the learner chooses action 3 when seeing an image of digit 2, then it receives a reward of 1.
We assume that the learner sees a noisy reward r, = R(x, a;) + wy, where w; ~ N'(0,0.5%). That is, r; follows normal
distribution with mean = R(x¢, a;) and standard deviation = 0.5.

This conversion is already implemented in the starter code, so you don’t need to code up anything here. However, you
should read the code and verify that the code is indeed implementing the above.

1.3 Algorithm

In this part, we will implement the simple value-based algorithm based on regression on the reward function. In the class,
we introduced two most common exploration mechanisms: e-Greedy and Boltzmann Exploration. They share the same
pseudo-code outlined in Algorithm 1.

Algorithm 1 Value-based contextual bandit algorithm based on regression

Randomly initialize a reward network Ry that takes the context as input and outputs the reward of each action.
Let 0 be the initial weights for the reward network.

fort=1,...,T do

forn=1,...,Ndo

Receive context x¢ .

Sample action a; ,, ~ (- | 1) Where (- | z) = f (Rg,(x, "))

Receive reward 7 ,.

6(—9,3
form=1,...,M do

1 N
0+ 60— AV (N > (Ro(ems arn) — rt,nf) : (1)

n=1

B Opy1 <0

In Algorithm 1, f : R4 — A 4 is a link function that maps an A-dimensional real vector to a distribution over A actions.
The two exploration mechanisms correspond to the following two choices of f:

¢ e-Greedy: [f(v)]a = § + (1 — ¢)l{a = argmax,, v(a’)}.
* Boltzmann Exploration: [f(v)], = %

Complete the tasks and answer the questions in (a)-(f) below. Note that the starter code already calculates the average
reward in Phase 1, Phase 2, overall reward, and prints them after execution. The starter code also already implements the
regression procedure (1). A figure of running average will be generated. The only TODO is to code up the two link
functions above (marked with TODO in the code).

You are allowed to change the default hyperparameters in the starter code (N, M, optimizer, learning rates, etc.). In the
tables below, you may also change the values of hyperparameters or add additional ones if you feel that the given values
cannot reflect the trend.

The starter code already implements two baseline methods: one uniformly randomly chooses an action, and the other
greedily chooses an action with the highest estimated reward. Run them with the command line:

python bandits.py —-—-algorithm Rand
python bandits.py —-—-algorithm Greedy

The code will run five times with different random seeds and average up the performance. For each method you
implement, a correct implementation must achieve an “overall reward” of at least 0.55 under the best choice of the



hyperparameter. Meeting this requirement is necessary to get full credit. Make sure that the code you submit is able to
run the following commands:

python bandits.py —-—-algorithm EG
python bandits.py —--algorithm BE

(a) (5%) Implement the e-Greedy decision rule (the first TODO in the code) and, for different values of e (specify the list
of e in eps_1list), record in the table below the average reward in Phase 1, Phase 2, and over the entire horizon.

€ Phase 1 Phase 2 Overall

0.3

0.1

0.03

0.01

0.003

0.001

(b) (5%) Paste the running average reward plot generated by the code for all parameters in (a), following the example
provided in the appendix.



(c) (5%) Implement Boltzmann Exploration decision rule (the second TODO in the code) and, for different values of A
(specify the list of A in 1am_11ist), record in the table below the average reward in Phase 1, Phase 2, and over the
entire horizon.

A Phase 1 Phase 2 Overall

10

20

50

(d) (5%) Paste the running average reward plot generated by the code for all parameters in (c), following the example
provided in the appendix.



(e) (5%) How does the performance in Phase 1 change as € decreases in e-Greedy, or as A increases in Boltzmann
Exploration? Why?

(f) (5%) How does the performance in Phase 2 change as € decreases in e-Greedy, or as A increases in Boltzmann
Exploration? Why?

2 Survey

(5%) How much time did you use to complete this homework? How difficult is this homework to you? Do you have any
suggestion for the course?



Appendix

The code will generate the learning curves for a list of parameters. The list of parameters is specified in eps_1list
and lam_list in the code. Below is an example of the figure that will be generated when running e-Greedy with

eps_1list=[0.03, 0.01]. In (b) above, this list should include all values specified in the table in (a), and similar
for lam_1list in (c) and (d).
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