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Contextual Bandits and Non-Contextual Bandits
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Multi-Armed Bandits
Non-Contextual Bandits with Discrete Actions



Multi-Armed Bandits

A slot machine

One-armed bandit

A row of slot machines

Multi-armed bandit

Arm



Multi-Armed Bandits

Given:  arm set 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇: 

 Learner chooses an arm 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅 𝑎𝑡 + 𝑤𝑡

Assumption:   𝑅 𝑎  is the (hidden) ground-truth reward function 

                         𝑤𝑡 is (zero-mean) noise

Goal:   maximize the total reward σ𝑡=1
𝑇 𝑅(𝑎𝑡)

Arm = Action

Regret = max
𝑎

 𝑇𝑅(𝑎) − σ𝑡=1
𝑇 𝑅(𝑎𝑡)



Multi-Armed Bandits (MAB) 

● Key challenge in MAB:  Exploration 

● The other challenges of RL are not presented in MAB:  

● Generalization (there is no input in MAB)

● Credit assignments (there is no delayed feedback)

● We will discuss about two categories of exploration strategies

● Based on mean estimation

● Based on mean and uncertainty estimation



Multi-Armed Bandits
Based on mean estimation



The Exploration and Exploitation Trade-off in MAB

● To perform as well as the best policy (i.e., best arm), the learner has to pull 

the best arm most of the time 

     ⇒ need to exploit

● To identify the best arm, the learner has to try every arm sufficiently many 

times

    ⇒ need to explore



A Simple Strategy: Explore-then-Commit 

What is the right amount of exploration (𝑇0)? 

Explore-then-commit (Parameter: 𝑇0)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 



Another Simple Strategy: 𝝐-Greedy

Take action

𝑎𝑡 = ቊ
 uniform 𝒜  with prob.  𝜖 

argmax𝑎 ෠𝑅𝑡 𝑎  with prob.  1 − 𝜖

where ෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠=𝑎  𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠=𝑎  

is the empirical mean of arm 𝑎 using samples 

up to time 𝑡 − 1.  

𝝐-Greedy  (Parameter: 𝜖)

Mixing exploration and exploitation in time 

(Explore) 

(Exploit) 

What is the right amount of exploration (𝜖)? 



Comparison

● 𝜖-Greedy is more robust to non-stationarity than Explore-then-Commit

● 𝜖-Greedy has a better performance in the early phase of the learning process



Quantifying the Estimation Error

In Explore-then-Commit, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 independent 

samples

True mean

Key Question: 

should decrease with 𝑁

𝑓(𝑁)?



Quantifying the Estimation Error

Empirical Mean over N samples
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98%

Confidence interval

(corresponding to 98% confidence)



Quantifying the Error:  Concentration Inequality

Let 𝑋1, … , 𝑋𝑁 ∈ [−1,1] be independent random variables with mean 𝜇.  

Then with probability at least 1 − 𝛿, 

1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖 − 𝜇 ≤
2 log 2/𝛿

𝑁
 .

Theorem.  Hoeffding’s Inequality



Quantifying the Estimation Error

In Explore-then-Commit, we obtain  𝑁 = 𝑇0/𝐴  independent samples of each arm. 

 ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 independent 

samples

True mean

𝑓(𝑁)? ≈ 𝑐0.99

1

𝑁

With probability 0.99, 



Calculating the Regret for Explore-then-Commit (1/4)

Regret = 𝑇𝑅(𝑎⋆) − ෍

𝑡=1

𝑇

𝑅(𝑎𝑡) = ෍

𝑡=1

𝑇

𝑅 𝑎⋆ − 𝑅(𝑎𝑡)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 

Assume 𝑅 𝑎 ∈ [0,1] for simplicity.  



Calculating the Regret for Explore-then-Commit (2/4)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 

Exploration Phase  

𝑅 𝑎⋆ − 𝑅 𝑎𝑡 ≤ 1

𝑎𝑡 is chosen evenly across arms 



Calculating the Regret for Explore-then-Commit (3/4)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 

Exploitation Phase  

𝑅 𝑎⋆ − 𝑅 𝑎𝑡

𝑎𝑡 = argmax𝑎 ෠𝑅(𝑎)

For all arm 𝑎,   ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 𝑐
1

# samples of arm 𝑎
= 𝑐

𝐴

𝑇0



Calculating the Regret for Explore-then-Commit (4/4)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 

Regret = ෍

𝑡=1

𝑇

𝑅 𝑎⋆ − 𝑅(𝑎𝑡)

≤  𝑇0 × 1 + 𝑇 − 𝑇0 × 2𝑐
𝐴

𝑇0

Exploration Phase Exploitation Phase

(regret increases with 𝑇0) (regret decreases with 𝑇0)



How much to spend on exploration? 

The 𝑇0 that minimizes the regret satisfies roughly 
𝑇0

𝑇
≈

𝐴

𝑇

1/3
 

⇒ The percentage of exploration should decrease with time. 

In 𝜖-greedy, we usually decrease the exploration rate 𝜖 with time. For example:  

𝜖𝑡 ≈ 𝑡−1/3 𝜖𝑡 ≈ 0.05 + 1 − 0.05 𝑒−0.01𝑡



Can We Do Better?

In explore-then-commit and 𝜖-greedy, the probability to choose arms do not depend 

on the estimated mean (except for the empirically best arm).  

… Maybe, the probability of choosing arms can be adaptive to the estimated mean? 

Solution: Refine the amount of exploration for each arm based on the current 

mean estimation. 

(Has to do this carefully to avoid under-exploration)



Refined Exploration

In each round, sample 𝑎𝑡 according to

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1.  

Boltzmann Exploration

𝜋𝑡 𝑎 ∝  exp 𝜆𝑡 ෠𝑅𝑡(𝑎)

𝜆𝑡 controls the degree of exploration.  

Should 𝜆𝑡 be increasing or decreasing over time? 



Summary: MAB Based on Mean Estimation

For 𝑡 = 1, 2, … , 𝑇, 

      Design a distribution 𝜋𝑡(⋅) based on the current mean estimation ෠𝑅𝑡(⋅) 

      Sample an arm 𝑎𝑡 ∼ 𝜋𝑡 and receive the corresponding reward 𝑟𝑡. 

      Refine the mean estimation ෠𝑅𝑡+1(⋅) with the new sample (𝑎𝑡 , 𝑟𝑡).  

𝜋𝑡 𝑎 ∝  exp 𝜆𝑡
෠𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖𝑡 𝕀 𝑎 = argmax
𝑎′

 ෠𝑅𝑡(𝑎′) +
𝜖𝑡

𝐴
EG

BE



Summary: MAB Based on Mean Estimation

Mean Estimation Decision Rule

෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠 = 𝑎 𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠 = 𝑎  

෠𝑅𝑡(⋅) 𝜋𝑡(⋅)
Pick action 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

𝜖-Greedy Boltzmann

𝜋𝑡 𝑎 ∝  exp 𝜆 ෠𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax
𝑎′

 ෠𝑅𝑡(𝑎′) +
𝜖

𝐴

arm

𝜋𝑡(𝑎)



Summary: MAB Based on Mean Estimation

● Both methods are based on the same mean estimation

● 𝜖-Greedy, Boltzmann exploration

● The key difference is in the decision rule, i.e., the mapping from estimated 

means ෠𝑅𝑡 to a distribution 𝜋𝑡. 

● The shape of the mapping makes differences

● There is a scalar hyperparameter that allows for a tradeoff between 

exploration and exploitation (𝜖𝑡 in EG, 𝜆𝑡 in BE)



Some Experiments

code

𝑇 = 10000 rounds

𝐴 = 2 arms

Reward mean 𝑅 = [0.5, 0.5 − Δ]

Bernoulli distribution

Time-dependent parameters

30 random seeds 

code

Observations:  

● Most algorithms have its worst regret at 

some intermediate Δ value

● Smaller exploration leads to larger 

variation in performance 
Small Δ is easy: don’t need to distinguish the two arms

Large Δ is also easy:  easy to distinguish the two arms

https://bahh723.github.io/rl2025fa_files/two-armed-bandits.py


Contextual Bandits
Based on reward function estimation



Contextual Bandits Generalizes MAB and SL

Multi-Armed Bandit

4.2

?

?

Supervised Learning

4.2

5.0

3.1

Input

No input, bandit feedback Takes input, full-information feedback

Contextual Bandit

4.2

?

?

Input

Takes input, bandit feedback

Generalization

Exploration

Credit assignment

Generalization

Exploration

Credit assignment

Generalization

Exploration

Credit assignment



Multi-Armed Bandits vs. Contextual Bandits

Multi-Armed Bandit

Contextual BanditContext

E.g. the user’s history, 

location, social network 

activity, …

all-user recommendation

personalized recommendation



Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇: 

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅(𝑥𝑡 , 𝑎𝑡) + 𝑤𝑡



Discussion

● Contextual bandits is a minimal simultaneous generalization of supervised 

learning (SL) and multi-armed bandits (MAB) 

● SL is extensively discussed in machine learning courses 

● We just learned some simple MAB algorithms

● Two strategies based on mean estimation

● Question:  Can you design a contextual bandits algorithm based on the 

techniques for SL and MAB? 



Two ways to leverage SL techniques in CB

𝑥: context,  𝑎: action,  𝑟: reward 

𝑟𝑅
𝑥

𝑎

Learn a mapping from 

(context, action) to reward

𝑎𝜋𝑥

Learn a mapping from 

context to action (or action distribution)

Value-based approach Policy-based approach

(discussed next) (slightly later in the course)



Recall:  MAB Based on Mean Estimation

Mean Estimation Decision Rule

𝜖-Greedy Boltzmann

𝜋𝑡 𝑎 ∝  exp 𝜆𝑡
෠𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖𝑡 𝕀 𝑎 = argmax
𝑎′

 ෠𝑅𝑡 𝑎′ +
𝜖𝑡

𝐴

෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠 = 𝑎 𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠 = 𝑎  

෠𝑅𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎)



CB Based on Reward Function Estimation (Regression)

Regression Decision Rule
෠𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

𝑟෠𝑅
𝑥

𝑎

Train a ෠𝑅 such that 𝑟𝑖 ≈ ෠𝑅(𝑥𝑖 , 𝑎𝑖)

𝜖-Greedy Boltzmann

𝜋𝑡 𝑎|𝑥 ∝  exp 𝜆𝑡
෠𝑅𝑡(𝑥, 𝑎)   

𝜋𝑡 𝑎|𝑥 = 1 − 𝜖𝑡 𝕀 𝑎 = argmax
𝑎′

 ෠𝑅𝑡(𝑥, 𝑎′) +
𝜖𝑡

𝐴

arm

𝜋𝑡(𝑎|𝑥)



CB Based on Reward Function Estimation (Regression)

Regression Decision Rule
෠𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

𝑟෠𝑅
𝑥

𝑎

Use any supervised learning 

technique to find a function 

𝜖-Greedy Boltzmann

𝜋𝑡 𝑎|𝑥 ∝  exp 𝜆𝑡
෠𝑅𝑡(𝑥, 𝑎)   

𝜋𝑡 𝑎|𝑥 = 1 − 𝜖𝑡 𝕀 𝑎 = argmax
𝑎′

 ෠𝑅𝑡(𝑥, 𝑎′) +
𝜖𝑡

𝐴

arm

𝜋𝑡(𝑎|𝑥)

෠𝑅 𝑥, 𝑎 ≈ 𝑟



The Regression Procedure

Context 𝑥𝑡

Action 𝑎𝑡

෠𝑅𝜃(𝑥𝑡, 𝑎𝑡)

𝐿 𝜃 = ෠𝑅𝜃 𝑥𝑡 , 𝑎𝑡 − 𝑟𝑡
2

Training loss:  



The Regression Procedure

Context 𝑥𝑡

෠𝑅𝜃(𝑥𝑡, 1)

෠𝑅𝜃(𝑥𝑡, 𝐴)

෠𝑅𝜃(𝑥𝑡, 2)
…

𝐿 𝜃 = ෠𝑅𝜃 𝑥𝑡 , 𝑎𝑡 − 𝑟𝑡
2

Training loss:  



The Regression Procedure:  Comparison

Suitable when 

1) actions are continuous, 

2) available action set changes with contexts 

𝑥

𝑎

𝑥ℝ ℝ𝐴



CB Based on Reward Function Estimation

For 𝑡 = 1, 2, … , 𝑇, 

      Receive context 𝑥𝑡

      Design a distribution 𝜋𝑡 ⋅ 𝑥𝑡) based on the estimated reward ෠𝑅𝑡(𝑥𝑡,⋅) 

      Sample an action 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) and receive the corresponding reward 𝑟𝑡. 

      Refine the reward estimator ෠𝑅𝑡+1(⋅,⋅) with the new sample (𝑥𝑡, 𝑎𝑡 , 𝑟𝑡).  

𝜋𝑡 𝑎|𝑥𝑡 ∝  exp 𝜆𝑡
෠𝑅𝑡(𝑥𝑡 , 𝑎)   

𝜋𝑡 𝑎|𝑥𝑡 = 1 − 𝜖𝑡 𝕀 𝑎 = argmax
𝑎′

 ෠𝑅𝑡 𝑥𝑡, 𝑎′ +
𝜖𝑡

𝐴
EG

BE

Instantiate a regression procedure ෠𝑅1



CB Based with Neural Networks and Batches

For 𝑡 = 1, 2, … , 𝑇, 

      For 𝑖 = 1, 2, … , 𝑛: 

 Receive context 𝑥𝑡,𝑖

      Design a distribution 𝜋𝑡 𝑎 𝑥𝑡,𝑖) based on the estimated reward ෠𝑅𝜃(𝑥𝑡,𝑖 , 𝑎)

 Sample an action 𝑎𝑡,𝑖 ∼ 𝜋𝑡(⋅ |𝑥𝑡,𝑖) and receive reward 𝑟𝑡,𝑖. 

For 𝑗 = 1,2, … , 𝑚: 

            

Instantiate a reward network ෠𝑅𝜃

𝜃 ← 𝜃 − 𝛼 ∇𝜃

1

𝑛
෍

𝑖=1

𝑛

෠𝑅𝜃 𝑥𝑡,𝑖 , 𝑎𝑡,𝑖 − 𝑟𝑡,𝑖
2



Homework 1

Contextual Bandit

Label 0

Label 1

Label 2

Label 3

Reward = 0

Reward = ?

Reward = ?

Reward = ?



Summary

● Contextual bandits (CB) simultaneously generalizes supervised learning (SL) 

and multi-armed bandits (MAB). It captures the challenges of generalization 

and exploration in online RL. 

● Any MAB algorithm based on “mean estimation” can be converted to a CB 

algorithm with “reward function estimation” by leveraging a regression.   

● This gives a general framework for value-based CB



Multi-Armed Bandits
Based on mean estimation and uncertainty quantification



Recall: MAB Based on Mean Estimation

Mean Estimation Decision Rule
෠𝑅𝑡(⋅) 𝜋𝑡(⋅)

Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)



MAB Based on Mean Estimation and Uncertainty Quantification

Mean Estimation & 
Uncertainty Quantification Decision Rule

෠𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

𝑈𝑡(𝑎):  quantifies the uncertainty of ෠𝑅𝑡(𝑎) 

෠𝑅𝑡 𝑎 − 𝑅(𝑎) ≤ 𝑐
 1

𝑁𝑡(𝑎)
 ≜ 𝑈𝑡(𝑎)



Useful Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

Image source: UC Berkeley CS188



Another Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

At time 𝑡, suppose that arm 𝑎 has been drawn for 𝑁𝑡 𝑎  times, with empirical 

mean ෠𝑅𝑡(𝑎).  

What can we say about the true mean 𝑅(𝑎)? 

 𝑅 𝑎 − ෠𝑅𝑡 𝑎 ≤ 𝑐
1

𝑁𝑡(𝑎)
   w.p. ≥ 0.99 

What’s the most optimistic mean estimation for arm 𝑎? 

෠𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)
 



Upper Confidence Bound (UCB)

In round 𝑡,  draw

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 + 𝑐
2 log 𝑡

𝑁𝑡(𝑎)

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1. 

𝑁𝑡(𝑎) is the number of samples of arm 𝑎 up to time 𝑡 − 1. 

UCB  (Parameter: 𝑐)

Exploration Bonus
= Amount of Uncertainty

cf. Mean-estimation-based algorithms samples 𝑎𝑡 ∼ 𝜋𝑡(⋅) = an increasing function of ෠𝑅𝑡(⋅) 

In those algorithms, Hoeffding’s inequality is used in the regret analysis, but not in the algorithm. 



Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7]     animation code

https://bahh723.github.io/rl2025sp_files/ucb-animation.gif
https://bahh723.github.io/rl2025fa_files/ucb.py


Summary:  Algorithms We Learned So Far

Approach

Explore-then-Exploit 

𝜖-Greedy

Boltzmann Exploration

Inverse Gap Weighting

Mean estimation + decision rule

Upper Confidence Bound

Mean estimation 

+ uncertainty quantification

+ decision rule



Summary



Summary

Value-based bandit algorithms

● Multi-armed bandits (non-contextual bandits)

● Based on mean estimation

● Based on mean estimation and uncertainty quantification

● Contextual bandits 

● Based on reward function estimation



CB Based on Reward Function Estimation

Regression Decision Rule

𝜖-Greedy Boltzmann

෠𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎|𝑥)

𝑟෠𝑅
𝑥

𝑎

Train a ෠𝑅 such that 𝑟𝑖 ≈ ෠𝑅(𝑥𝑖 , 𝑎𝑖)

(Special Case:  MAB Based on Mean Estimation)



MAB Based on Mean and Uncertainty Estimation

Mean Estimation & 
Uncertainty Quantification Decision Rule

෠𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

UCB:  argmax
𝑎

 ෠𝑅 𝑎 + 𝑈𝑡(𝑎) 

TS:  argmax
𝑎

 ෠𝑅 𝑎 + 𝑈𝑡 𝑎 𝑛𝑡(𝑎) 

noise

Uncertainty quantification for CB is less trivial – discussed in the future (special topics).  
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