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Policy-Based Bandits

● Key challenges:  Exploration and Generalization (if there are contexts)

● Algorithms we will discuss: 

● KL-regularized policy updates (PPO)

● Policy gradient (REINFORCE)



Policy-Based Bandits 𝑥: context,  𝑎: action

෠𝑅(𝑥, 𝑎)
𝑥

𝑎

Value-based approach Policy-based approach
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𝑥
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𝑥

𝜋(𝐴|𝑥)

…

𝜋(𝑥)𝑥



Policy-Based Bandits

Why policy-based bandit algorithms? 

● Actually, in finite-action contextual bandit problems, value- and policy-based approaches 

are almost equivalent. 

● But we have to use policy-based approaches to handle continuous action space. 

● They are also different in MDPs. (later in the course)



The Full-Information MAB

Given:  set of actions 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇: 

     The learner chooses an action 𝑎𝑡

     Environment reveals the reward 𝑟𝑡 𝑎 = 𝑅 𝑎 + 𝑤𝑡(𝑎) of all actions 

Policy-based algorithm:  Maintain a distribution 𝜋𝑡(𝑎) and update it with feedback 

Sample 𝑎𝑡 ∼ 𝜋𝑡

How should we update from 𝜋𝑡 to 𝜋𝑡+1 using 𝑟𝑡 1 , … , 𝑟𝑡(𝐴)? 



Algorithm for the Full-Information MAB

𝑓 𝜋 =  ෍

𝑎=1

𝐴

𝜋 𝑎 𝑅(𝑎) ←  We want to find a 𝜋 that maximizes this value

But we don’t know 𝑅(𝑎)

But we get noisy samples of 𝑅 𝑎 , i.e., 𝑟𝑡(𝑎)



Gradient Ascent

Stochastic Gradient Ascent Gradient Ascent  

𝑓 𝜋 =  ෍

𝑎=1

𝐴

𝜋 𝑎 𝑅(𝑎) ⇒  ∇𝜋𝑓 𝜋 = 𝑅

𝜋𝑡+1 ← 𝜋𝑡 + 𝜂𝑅

𝜋𝑡+1 ← Π 𝜋𝑡+1

For 𝑡 = 1, 2 …

𝜋𝑡+1 ← 𝜋𝑡 + 𝜂𝑟𝑡

𝜋𝑡+1 ← Π 𝜋𝑡+1

For 𝑡 = 1, 2 …



Exponential Weight Update

𝜋𝑡+1 𝑎 ∝ 𝜋𝑡 𝑎  𝑒𝜂𝑟𝑡(𝑎)

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏  𝑒𝜂𝑟𝑡(𝑏)
or 

For 𝑡 = 1, 2 …

Better for bandit problems (because we never get 𝜋𝑡 𝑎 = 0) 



Exponential Weight Update = KL-Regularized Policy Updates

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏  𝑒𝜂𝑟𝑡(𝑏)



KL Divergence – A Distance Measure for Distributions

KL 𝜋, 𝜋′ = ෍

𝑎

𝜋 𝑎  log
𝜋(𝑎)

𝜋′(𝑎)

KL 𝜋, 𝜋′ ≥ 0

KL 𝜋, 𝜋′ = 0  if and only if 𝜋 = 𝜋′

KL 𝜋, 𝜋′ ≠ KL 𝜋′, 𝜋



𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

Regularized Policy Updates

The Improvement of 𝜋 over 𝜋𝑡 on 𝑟𝑡  

= argmax
𝜋∈Δ(𝒜)

෍

𝑎

𝜋 𝑎 − 𝜋𝑡 𝑎 𝑟𝑡(𝑎) −
1

𝜂
KL 𝜋, 𝜋𝑡

0

𝜋𝑡

𝜋 − 𝜋𝑡, 𝑟𝑡

0

𝜋𝑡 −KL(𝜋, 𝜋𝑡)

+ =

𝜋𝑡
𝜋𝑡+1



Multi-Armed Bandits



Multi-Armed Bandits

Given:  set of arms 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇: 

      Learner chooses an arm 𝑎𝑡 ∈ 𝒜

      Learner observes 𝑟𝑡 𝑎𝑡 = 𝑅 𝑎𝑡 + 𝑤𝑡(𝑎𝑡)



Recall:  Exponential Weight Updates

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏  𝑒𝜂𝑟𝑡(𝑏)



Exponential Weight Updates for Bandits? 

Only update the arm that we choose? 

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏  𝑒𝜂𝑟𝑡(𝑏)

No longer observable



Exponential Weight Updates for Bandits? 

● Ƹ𝑟𝑡(𝑎) is an “estimator” for 𝑟𝑡(𝑎)

● But we can only observe the reward of one arm

● And let’s set the restriction that we can only construct Ƹ𝑟𝑡 from 𝑟𝑡(𝑎𝑡)

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , Ƹ𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡 𝜋𝑡+1 𝑎 =

𝜋𝑡 𝑎  𝑒𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏  𝑒𝜂 Ƹ𝑟𝑡(𝑏)

What’s the problem of setting Ƹ𝑟𝑡 = (0,0, … , 𝑟𝑡 𝑎𝑡 , … , 0) ?



Unbiased Reward / Gradient Estimator

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎 =

𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
 if 𝑎𝑡 = 𝑎 

0 otherwise

Importance Weighting 

Weight a sample by the inverse of the probability we observe it

𝔼 Ƹ𝑟𝑡(𝑎) = Pr 𝑎𝑡 = 𝑎
𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
+ Pr 𝑎𝑡 ≠ 𝑎 0

= 𝜋𝑡 𝑎
𝑟𝑡 𝑎

𝜋𝑡 𝑎

= 𝑟𝑡(𝑎)



Directly Applying Exponential Weights

For 𝑡 = 1,2, … , 𝑇: 

Sample 𝑎𝑡 ∼ 𝜋𝑡, and observe 𝑟𝑡(𝑎𝑡) 

𝜋1 𝑎 = 1/𝐴  for all 𝑎  

Define for all 𝑎:  

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′  exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Update policy: 



Simple Experiment

code

● 𝐴 = 2, 𝑇 = 1500, 𝜂 = 1/ 𝑇

● For 𝑡 ≤ 500, 𝑟𝑡 = [Bernoulli 0.2 , Bernoulli 0.8 ]

● For 500 < 𝑡 ≤ 1500, 𝑟𝑡 = [Bernoulli 0.8 , Bernoulli 0.2 ]

● code

https://bahh723.github.io/rl2025fa_files/exp3.py


Solution 1: Adding Extra Exploration

● Idea:  use at least 𝜖 probability to explore uniformly

● Instead of sampling 𝑎𝑡 according to 𝜋𝑡, use

    Then the unbiased reward estimator becomes 

𝜋𝑡
′ 𝑎 = 1 − 𝜖 𝜋𝑡 𝑎 +

𝜖

𝐴

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡
′(𝑎)

𝕀 𝑎𝑡 = 𝑎 =
𝑟𝑡(𝑎)

1 − 𝜖 𝜋𝑡 𝑎 +
𝜖
𝐴

𝕀 𝑎𝑡 = 𝑎



Applying Solution 1

For 𝑡 = 1,2, … , 𝑇: 

Sample 𝑎𝑡 from 𝜋𝑡
′ = 1 − 𝜖 𝜋𝑡 + 𝜖 uniform(𝒜), and observe 𝑟𝑡(𝑎𝑡) 

𝜋1 𝑎 = 1/𝐴  for all 𝑎  

Define for all 𝑎:  

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡
′(𝑎)

𝕀 𝑎𝑡 = 𝑎

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′  exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Update policy: 



Solution 1: Adding Extra Exploration



Solution 2:  Reward Estimator with a Baseline

● Still sample 𝑎𝑡 from 𝜋𝑡, but construct the reward estimator as

● Why this resolves the issue?   

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎 + 𝑏



Applying Solution 2

For 𝑡 = 1,2, … , 𝑇: 

Sample 𝑎𝑡 from 𝜋𝑡, and observe 𝑟𝑡(𝑎𝑡) 

𝜋1 𝑎 = 1/𝐴  for all 𝑎  

Define for all 𝑎:  

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎 + 𝑏

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′  exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Update policy: 

baseline

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎or equivalently



Solution 2:  Reward Estimator with a Baseline



This is the EXP3 Algorithm

“Exponential weight algorithm for Exploration and Exploitation”

● Exponential weights + either of the two solutions
 



The Role of Baseline

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏𝑡

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎  exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′  exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Larger 𝑏𝑡:  More exploratory (tends to decrease the probability of the action just chosen) 

                 – needed to detect changes in the environment.  

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋, Ƹ𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡or

We usually set 𝑏𝑡 to be close to the recent performance level of the learner itself

● When finding an action better than the learner itself, increase its probability

● Otherwise, decrease its probability



Summary

● Exponential weight update elements:  

● Incremental update  (2 equivalent forms)

● Importance weighting because we only observe the reward of the action we choose 

(otherwise the reward is biased)

● Baseline or extra uniform exploration to encourage exploration 



Review:  Exploration Strategies for Bandits

𝑥: context,  𝑎: action,  𝑟: reward 

𝑟𝑅
𝑥

𝑎

(context, action) to reward

𝑎𝜋𝑥

context to action distribution

Value-based

Policy-based

MAB CB

Mean estimation
+

EG, BE
Regression

+
EG, BE

KL-regularized update 

with reward estimators

(EXP3)

+
baseline, uniform exploration

Next

Uncertainty as bonus



Contextual Bandits



Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇: 

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡(𝑥𝑡, 𝑎𝑡)



KL-Regularized Policy Updates

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

෍

𝑎

𝜋 𝑎 Ƹ𝑟𝑡(𝑎) −
1

𝜂
KL(𝜋, 𝜋𝑡)

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏𝑡

𝜋𝑡(𝑎)
 𝕀 𝑎𝑡 = 𝑎

𝜃𝑡+1 = argmax
𝜃

෍

𝑎

𝜋𝜃 𝑎|𝑥𝑡  Ƹ𝑟𝑡(𝑥𝑡 , 𝑎) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑡 , 𝜋𝜃𝑡

(⋅ |𝑥𝑡)

Ƹ𝑟𝑡 𝑥𝑡, 𝑎 =
𝑟𝑡 𝑥𝑡 , 𝑎 − 𝑏𝑡(𝑥𝑡)

𝜋𝜃𝑡
(𝑎|𝑥𝑡)

 𝕀 𝑎𝑡 = 𝑎

In practice, set 𝑏𝑡 as a running average of 𝑟𝑡(𝑎𝑡) to track 
the learner’s own performance. 

The larger 𝑏𝑡 is, the more exploration.  



KL-Regularized Policy Updates

Receive context 𝑥𝑡

For 𝑡 = 1, 2, … , 𝑇: 

Take action 𝑎𝑡 ∼ 𝜋𝜃𝑡
⋅ 𝑥𝑡) and receive reward 𝑟𝑡(𝑥𝑡, 𝑎𝑡)

Create reward estimator Ƹ𝑟𝑡 𝑥𝑡, 𝑎 =
𝑟𝑡 𝑥𝑡,𝑎 −𝑏𝑡(𝑥𝑡)

𝜋𝜃𝑡
(𝑎|𝑥𝑡)

 𝕀 𝑎𝑡 = 𝑎

𝜃𝑡+1 = argmax
𝜃

෍

𝑎

𝜋𝜃 𝑎|𝑥𝑡  Ƹ𝑟𝑡(𝑥𝑡, 𝑎) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑡 , 𝜋𝜃𝑡

(⋅ |𝑥𝑡)  

Update



KL-Regularized Policy Updates with Batches (PPO)

Receive context 𝑥𝑖

For 𝑡 = 1, 2, … , 𝑇: 

Take action 𝑎𝑖 ∼ 𝜋𝜃𝑡
⋅ 𝑥𝑖) and receive reward 𝑟𝑖(𝑥𝑖 , 𝑎𝑖)

Create reward estimator Ƹ𝑟𝑖 𝑥𝑖 , 𝑎 =
𝑟𝑖 𝑥𝑖,𝑎 −𝑏𝑡(𝑥𝑖)

𝜋𝜃𝑡
(𝑎|𝑥𝑖)

 𝕀 𝑎𝑖 = 𝑎

𝜃 ← 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

෍

𝑎

𝜋𝜃 𝑎|𝑥𝑖  Ƹ𝑟𝑖(𝑥𝑖 , 𝑎) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑖 , 𝜋𝜃𝑡

(⋅ |𝑥𝑖)

For 𝑗 = 1, … , 𝑀: 

For 𝑖 = 1, … , 𝑁:

For minibatch ℬ ⊂ 1, 2, … , 𝑁  of size 𝐵: 

= 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃𝑡
𝑎𝑖 𝑥𝑖

𝑟𝑖 𝑥𝑖 , 𝑎𝑖 − 𝑏𝑡(𝑥𝑖) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑖 , 𝜋𝜃𝑡

(⋅ |𝑥𝑖)

𝜃𝑡+1 ← 𝜃

Solve argmax



KL-Regularized Policy Updates with Batches (PPO)

𝜃 ← 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃𝑡
𝑎𝑖 𝑥𝑖

𝑟𝑖 𝑥𝑖 , 𝑎𝑖 − 𝑏𝑡(𝑥𝑖) −
1

𝜂
෍

𝑎

𝜋𝜃 𝑎|𝑥𝑖  log
𝜋𝜃(𝑎|𝑥𝑖)

𝜋𝜃𝑡
(𝑎|𝑥𝑖)

KL 𝜋𝜃 ⋅ 𝑥𝑖 , 𝜋𝜃𝑡
⋅ 𝑥𝑖



Estimating KL by Samples http://joschu.net/blog/kl-approx.html

Sample 𝑎𝑖 ∼ 𝜋𝜃𝑡
(⋅ |𝑥𝑖) and define  𝑘𝑙𝑖(𝜃, 𝜃𝑡) =

𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

− 1 − log
𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

Then  𝔼 𝑘𝑙𝑖(𝜃, 𝜃𝑡) ≈ KL 𝜋𝜃𝑡
⋅ 𝑥𝑖 , 𝜋𝜃 ⋅ 𝑥𝑖

Just need one sample of 𝑎𝑖

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html


PPO with KL Estimator

Receive context 𝑥𝑖

For 𝑡 = 1, 2, … , 𝑇: 

Take action 𝑎𝑖 ∼ 𝜋𝜃𝑡
⋅ 𝑥𝑖) and receive reward 𝑟𝑖(𝑥𝑖 , 𝑎𝑖)

Create reward estimator Ƹ𝑟𝑖 𝑥𝑖 , 𝑎 =
𝑟𝑖 𝑥𝑖,𝑎 −𝑏𝑡(𝑥𝑖)

𝜋𝜃𝑡
(𝑎|𝑥𝑖)

 𝕀 𝑎𝑖 = 𝑎

𝜃 ← 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃𝑡
𝑎𝑖 𝑥𝑖

𝑟𝑖 𝑥𝑖 , 𝑎𝑖 − 𝑏𝑡(𝑥𝑖) −
1

𝜂
𝑘𝑙𝑖(𝜃, 𝜃𝑡)

For 𝑗 = 1, … , 𝑀: 

For 𝑖 = 1, … , 𝑁:

For minibatch ℬ ⊂ 1, 2, … , 𝑁  of size 𝐵: 

𝜃𝑡+1 ← 𝜃

𝑘𝑙𝑖(𝜃, 𝜃𝑡) =
𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

− 1 − log
𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

HW2 task
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LLM Training 

Phase 1:  training with supervised learning (next-token prediction)

Given a human generated sentence:   “A bird lands on Mars”

Earth

𝜋“A bird lands on” Mars

Jupyter

on

𝜋“A bird lands” at

with

This gives a language model  𝜋SL after training



LLM Training 

No

𝜋“It’s late.” Yes

I

mind

𝜋“It’s late. No” worries

way

I

𝜋“It’s late.” Please

You’re

very

𝜋“It’s late. You’re” lazy

not

Let the machine (𝜋𝑆𝐿) generate sentences:

+1

-1

Scores given 

by human

Phase 2:  training with reinforcement learning



LLM Training 

Phase 2:  training with reinforcement learning

(𝑥, 𝑎, 𝑟) tuples:    

(“It’s late”, “No”, +1) (“It’s late. No”, “worries”, +1)

(“It’s late”, “You’re”, -1) (“It’s late. You’re”, “lazy”, -1)

෍

𝑖

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃SL
𝑎𝑖 𝑥𝑖

𝑟𝑖 − 𝑏(𝑥𝑖) −
1

𝜂
𝑘𝑙𝑖(𝜃, 𝜃SL)Maximize 
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