Bandits 2

Chen-Yu Wei

Roadmap

Generalization

Credit

Exploration Assignment

Model-Based
Policy-Based

Value-Based

Bandit

MDP

v

Policy-Based Bandits

e Key challenges: Exploration and Generalization (if there are contexts)

e Algorithms we will discuss:
e KL-regularized policy updates (PPO)
e Policy gradient (REINFORCE)

Policy-Based Bandits x: context, a: action

(Co"ﬁﬁ"‘m a a//ﬂ"\)

{\/J W 'k —GCV}W

—— T(X) ¢ acton s

Sof{map

Value-based approach Policy-based approach

Policy-Based Bandits

Why policy-based bandit algorithms?

e Actually, in finite-action contextual bandit problems, value- and policy-based approaches
are almost equivalent.

e But we have to use policy-based approaches to handle continuous action space.

e They are also different in MDPs. (later in the course)

The Full-Information MAB

Given: set of actions A = {1, ..., A}
Fortmet=1,2,..,T:
The learner chooses an action a;
Environment reveals the reward r:(a) = R(a) + w;(a) of all actions

Policy-based algorithm: Maintain a distribution ;(a) and update it with feedback

Sample a; ~ m; o
How should we update from r; to m;,; using r:(1), ..., 1:(4)? &)v iy

Kot <= G + I
(o) Z{;(ﬂ)«\’h(&)

Algorithm for the Full-Information MAB

A
f(m) = Z n(a)R(a) < We want to find a = that maximizes this value
=1
a /g(zﬁ
But we don’t know R(a) £x) ,
But we get noisy samples of R(a), i.e., r:(a) /\ v i(x) ﬁﬁx)

Y

Gradient Ascent
(02

A fm =) n(@R@ = Vaf(®=R

Z 6 ig a=1
Gradient Ascent [wowty refd Stochastic Gradient Ascent
7
Fort=1,2... / Fort=1,2... F[QJ:K
e < T+ 1) Ty < T + N7

41 < H(nt+1) TTeyq — H(ﬂt+1)

Exponential Weight Update

Fort=1,2...

mey1(a) < me(a) elt(a)

T[t (a) 3777”1:(61)

ZbEcﬂ [(b) enre(b)

or Teyq(a) =

Better for bandit problems (because we never get m;.(a) = 0)

Exponential Weight Update = KL-Regularized Policy Updates

f ’@é{(&) -~)

_J

AAistoare (Zﬁc)
T

mey1(a) =

T (B) enrt(®)

_ ZaeaTeD) T

!
“ M¢yq = aArgmax &(ﬂ — Tlg, rt) L KL(T[) T[t)}
TL’EA(JZ) — TI —\/\
bﬁv —_—

J, Jr)
(A1) et
VT/T/

) 1) K{(o\)

KL Divergence — A Distance Measure for Distributions

m(a)
'(a)

KL(m, ') = Z m(a) log

a

KL(w, ') =0
KL(m,7') =0 ifandonlyif m ==’
KL(m, ") # KL(w',)

Regularized Policy Updates

)
Terq = argmax §(m — m,, ;) — —KL(m, nt)}
mTeEA(A) \ '
N

Y

:
— %rregAr?j)X 1261: (n(a) — T, (a))'rt (a) — %KL(n, ;)

J

J

Y
The Improvement of = over m; on r;

<7T - T[t, Tt>

Multi-Armed Bandits

Multi-Armed Bandits

Given: setofarms A = {1, ..., A}
Fortimet=1,2,..,T:

Learner chooses anarm a; € A

Learner observes r:(a;) = R(a;) + ws(a;)

Recall: Exponential Weight Updates
=

n’t(a) enrt(a)
} @@ Tei(a) = 5 m(b) e

Mgy = argmax {(T[— 1, 1) — = KL(7, ¢
TEA(A) n

\/

Exponential Weight Updates for Bandits?

Mgy = argmax {(T[— 1, 1) — = KL(7, ¢

TEA(A) &

}

.“.

e 4q(a)

_ m(a) e/nf"(a)

No longer observable

Only update the arm that we choose?

Exponential Weight Updates for Bandits?

T[t(a) enf't(a)
} .“. T[t+1(a) — Zbedq nt(b) eﬂft(b)

Mgy = argmax {(T[— 1,) — = KL(7, ¢
TEA(A) n

e 7:(a) is an “estimator” for r;(a)

———————

e But we can only observe the reward of one arm e

e And let’s set the restriction that we can only construct fm
(Yo, 1) -, Yeta)

What's the problem of setting 7, = (0,0, ..., :(a;), ...,0) ? /t\” 7)

[7)= (Teowo , Ty, oo wan(p>)

Unbiased Reward / Gradient Estimator

Weight a sample by the inverse of the probability we observe it

frt(a) if a, = a
+(a t —
@ = 2 g, =) = | @
L0 otherwise
kf,‘\/u(ou) (Q(‘\-&—)
Elf (@] = Pr{a, = a} 22 + Pra, # a}0 (o By - 9%
[Ty (a)
_ r:(a)
= m¢(a) T.(a)
=1¢(a) Importance Weighting
/

7(%(05

Directly Applying Exponential Weights

mi(a) =1/A forall a A snime Fp(a) 20
Fort=1,2,..,T: D Fas ims we Ao ;5[@))
Sample a; ~ m;, and observe r;(a;) bt dintebmeee (o5 =0

Define for all a: =) increse He prob of Lhe arm

fe(a) = Z((c;)) I{a, =a} "€ #e just chue

Update policy:

¢ (a) exp(nfy(a))
Yaren (@) exp(nfy(a”))

Terq(a) =

Simple Experiment

e A=2, T =1500, n=1/T
e Fort <500, r = [Bernoulli(0.2), Bernoulli(0.8)]
e For500 <t < 1500, r; = [Bernoulli(0.8), Bernoulli(0.2)]

e code Te (1) vegsmall
2 ¢
/ () x|
0.8 +
) 11(1)
V(1) > ———
“% —— expected reward of arm 1 7(’ (()
5 —— expected reward of arm 2 _é_
2 Probability of Choosing Arm 1
0.4
0.24 —
0.0 T T T T T T T T
0 200 400 600 800 1000 1200 1400

Time Step

https://bahh723.github.io/rl2025fa_files/exp3.py

Solution 1: Adding Extra Exploration

e Idea: use atleast € probability to explore uniformly

e Instead of sampling a; according to m;, use

o ¢
€ SamiDfe Unform
i@ =1-n (@) += = Ple % o
A W./?. (-¢
Then the unbiased reward estimator becomes amle 4~ g
A re(a
@ = 2Dy, = qy = — Dy, — g

mi(a) (1—e)m(a) +7

Applying Solution 1

mi(a) =1/A forall a

Fort=1,2,..,T:
Sample a; from ; = (1 — €)m; + € uniform(A), and observe r;(a;)
Define for all a:

re(a)

. (a)

fe(a) = Ita; = a}

Update policy:

¢ (a) exp(nfy(a))
Yaren (@) exp(nfy(a”))

Terq(a) =

Solution 1: Adding Extra Exploration

1.0
0.8 4
0.6
v —— expected reward of arm 1
= —— expected reward of arm 2
2 Probability of Choosing Arm 1
0.4
0.2
0.0 T

T T T T T T T
0 200 400 600 800 1000 1200 1400
Time Step

Solution 2: Reward Estimator with a Baseline

e Still sample a; from m;, but construct the reward estimator as

O ¢ (L) <
e \Why this resolves the issue? N fﬁ() <

7 (a) =rt7(§zc;bﬂ{at =aj+b
E((o) = Tulax @
[R(@) = 7 \[o +Q t (1) |y = Vyley - BW) (1 an)

’)//C)

Applying Solution 2

mi(a) =1/A forall a

Fort=1,2,..,T:
Sample a; from n;, and observe r:(a;)
Define for all a:

PR

(@) — b ()." b\\‘ baseline

re(a) — r(a)— b,

- [{a; = a} + b orequivalently 7.(a) = A ‘{a; = a}
m.(a) n.(a)

fe(a) =

Update policy:
m(a) eXp(n(é/(ca@

mip1(a) = Za’ecfl . (a") eXWt(a’))oxf)w

Solution 2: Reward Estimator with a Baseline

1.0
0.8 4
0.6
v —— expected reward of arm 1
= —— expected reward of arm 2
2 Probability of Choosing Arm 1
0.4
0.2
0.0 |

T T T T T T T
0 200 400 600 800 1000 1200 1400
Time Step

This is the EXP3 Algorithm

“Exponential weight algorithm for Exploration and Exploitation”
e Exponential weights + either of the two solutions

The Role of Baseline

— b,
@) = L0 1 = o
_ m:(a) exp(nfy(a))
Terq(a) =

a'ea Tt (a") exp(nf(a’))

or

TTt4q — Arrgmax
TEA(A)

{(n,) — %KL(n, nt)}

Larger b;: More exploratory (tends to decrease the probability of the action just chosen)

— needed to detect changes in the environment.

We usually set b; to be close to the recent performance level of the learner itself
e When finding an action better than the learner itself, increase its probability

e Otherwise, decrease its probability

Summary

e EXxponential weight update elements:
e Incremental update (2 equivalent forms)

e Importance weighting because we only observe the reward of the action we choose
(otherwise the reward is biased)

e Baseline or extra uniform exploration to encourage exploration

Review: Exploration Strategies for Bandits

x: context, a: action, r: reward

Value-based

Policy-based

context to action distribution

MAB CB
Mean estimation
+ Regression
EG, BE +
EG, BE

Uncertainty as bonus
KL-regularized update
with reward estimators

(EXP3) Next

+

baseline, uniform exploration

Contextual Bandits

Contextual Bandits

Fortimet=1,2,..,T:
Environment generates a context x; € X
Learner chooses an action a; € A
Learner observes r:(x, a;)

KL-Regularized Policy Updates

1
Tyr1 = argmax Z n(a)t:(a) — EKL(n, ;)

TEA(A) =
— b
(@) = ’”tgft)(a) ¢ Ifa, = a)

In practice, set b; as a running average of r;(a;) to track
the learner’s own performance.

The larger b, is, the more exploration.

1
Orr1 = arggnax Z mg(alxe) ¢ (xe, a) — EKL(”H (- |xt);7T9t(' |xt))

a

(X, a) — be(xe)
mg, (a|xe)

Fe(xg, @) = l{a; = a}

KL-Regularized Policy Updates

Fort=1,2,..,T:
Receive context x;

Take action a; ~ my (-|x;) and receive reward r;(x, a;)

Te(x¢,a)—bg(x¢) _
) e =)

Create reward estimator 7, (x;, a) =

Update

1
Ory1 = arggnax z mg(a|x,) fr(xe, a) — EKL(EB(’ |xt);ﬂ9t(' |xt))

a

KL-Regularized Policy Updates with Batches (PPO)

Fort=1,2,..,T:
Fori=1,..,N:
Receive context x;
Take action a; ~ my,(+|x;) and receive reward r;(x;, a;)

Create reward estimator 7 (x;, a) = Z&eD=be@0) pe,
mg,(alx;)
Forj=1,..,M:
For minibatch B c {1, 2, ..., N} of size B:

Solve argmax

1 1
0«0 +V, Ez z o (alx;) 7;(x;, a) — EKL(T[Q(' 1x;), g, (¢ |xl-))

LEB a

=0+ V, %2 (7’[9 (a;1x,) (r; (g, a;) — be(x;)) — %KL(T[Q(' %), g, (- Ixi))>
icB

nHt(ailxi)

Orr1 < 0

KL-Regularized Policy Updates with Batches (PPO)

0 <0+Vy— Z Z (ﬂe (allxl) xi, a;) — be(x;)) — %Z mg(alx;) log L (alxi)>

T, (al|x;)
a

. J
Y

KL (7’[9(' |x;), 76, (: Ixi))

Estimating KL by Samples http://joschu.net/blog/kl-approx.html

g (ai|x;) g(ailx;)
—1-1
o, (ailx;) 05 mo . (ailx;)

Sample a; ~ 1y, (- |x;) and define kl;(6,0;) =

Then E[kl;(0,6,)] =~ KL (”et(‘ |x,), 7 (- |xl,)) Just need one sample of a;

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html

PPO with KL Estimator HW2 task

Fort=1,2,..,T:
Fori=1,..,N:

mo(ailx) log ™2 (ailx;)

g, (a;|x;) g, (a;|x;)

kl;(0,0;) =

Receive context x;
Take action a; ~ my, (+|x;) and receive reward r;(x;, a;)
ri(xy,a)—be(xy)
l l . l H{al
T, (alx;)

Create reward estimator 7;(x;, a) = = a}
Forj=1,..,M:

For minibatch B c {1, 2, ..., N} of size B:

1 mg(a;lx;) 1
0 < 0 + Vg E; <7T9t(ai|xi) (ri(xl-, Cli) — bt(xi)) — Ekli(g, Ht)>

Ory1 < 0

Applications In Training LLM with RL

LLM Training

Phase 1. training with supervised learning (next-token prediction)

Given a human generated sentence: “A bird lands on Mars”

-—— ON v
“A bird lands” N > at X
— with X

- Earth X
“‘Abird lands on” - g [~Mars «
— Jupyter X

This gives a language model mg;, after training

LLM Training

Phase 2: training with reinforcement learning Scores given
by human

X

Let the machine (75,) generate sentences:

., No — » mind

“It's late.” g [" Yes =) “It's late. NO” - |y m [~worries 4
| > way
L -~ very

“It's late.” w w [~Please mb psiate. Youre” o o [lazy -1
— You’re —— not

LLM Training

Phase 2. training with reinforcement learning

(x,a,r) tuples:

(“It's late”, “No”, +1) (“It's late. No”, “worries”, +1)

L 11

(“It's late”, “You're”, -1) (“It's late. You're”, “lazy”, -1)

Maximize Z (o (ailx) (r; = b(x;)) — %kli(e: HSL))

Tog,. (a;|x;)

	Slide 1: Bandits 2
	Slide 2: Roadmap
	Slide 3: Policy-Based Bandits
	Slide 4: Policy-Based Bandits
	Slide 5: Policy-Based Bandits
	Slide 6: The Full-Information MAB
	Slide 7: Algorithm for the Full-Information MAB
	Slide 8: Gradient Ascent
	Slide 9: Exponential Weight Update
	Slide 10: Exponential Weight Update = KL-Regularized Policy Updates
	Slide 11: KL Divergence – A Distance Measure for Distributions
	Slide 12: Regularized Policy Updates
	Slide 13: Multi-Armed Bandits
	Slide 14: Multi-Armed Bandits
	Slide 15: Recall: Exponential Weight Updates
	Slide 16: Exponential Weight Updates for Bandits?
	Slide 17: Exponential Weight Updates for Bandits?
	Slide 18: Unbiased Reward / Gradient Estimator
	Slide 19: Directly Applying Exponential Weights
	Slide 20: Simple Experiment
	Slide 21: Solution 1: Adding Extra Exploration
	Slide 22: Applying Solution 1
	Slide 23: Solution 1: Adding Extra Exploration
	Slide 24: Solution 2: Reward Estimator with a Baseline
	Slide 25: Applying Solution 2
	Slide 26: Solution 2: Reward Estimator with a Baseline
	Slide 27: This is the EXP3 Algorithm
	Slide 28: The Role of Baseline
	Slide 29: Summary
	Slide 30: Review: Exploration Strategies for Bandits
	Slide 31: Contextual Bandits
	Slide 32: Contextual Bandits
	Slide 33: KL-Regularized Policy Updates
	Slide 34: KL-Regularized Policy Updates
	Slide 35: KL-Regularized Policy Updates with Batches (PPO)
	Slide 36: KL-Regularized Policy Updates with Batches (PPO)
	Slide 37: Estimating KL by Samples
	Slide 38: PPO with KL Estimator
	Slide 39: Applications in Training LLM with RL
	Slide 40: LLM Training
	Slide 41: LLM Training
	Slide 42: LLM Training

