
Bandits 2
Chen-Yu Wei

Roadmap

Bandit MDP

Value-Based

Policy-Based

Environment

Learning Method

Model-BasedGeneralization

Exploration
Credit

Assignment

Policy-Based Bandits

● Key challenges: Exploration and Generalization (if there are contexts)

● Algorithms we will discuss:

● KL-regularized policy updates (PPO)

● Policy gradient (REINFORCE)

Policy-Based Bandits 𝑥: context, 𝑎: action

෠𝑅(𝑥, 𝑎)
𝑥

𝑎

Value-based approach Policy-based approach

𝜋 𝑎|𝑥 ∝ exp 𝜆 ෠𝑅(𝑥, 𝑎)

෠𝑅(𝑥, 1)
𝑥

෠𝑅(𝑥, 𝐴)

… 𝜋(1|𝑥)
𝑥

𝜋(𝐴|𝑥)

…

𝜋(𝑥)𝑥

Policy-Based Bandits

Why policy-based bandit algorithms?

● Actually, in finite-action contextual bandit problems, value- and policy-based approaches

are almost equivalent.

● But we have to use policy-based approaches to handle continuous action space.

● They are also different in MDPs. (later in the course)

The Full-Information MAB

Given: set of actions 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇:

 The learner chooses an action 𝑎𝑡

 Environment reveals the reward 𝑟𝑡 𝑎 = 𝑅 𝑎 + 𝑤𝑡(𝑎) of all actions

Policy-based algorithm: Maintain a distribution 𝜋𝑡(𝑎) and update it with feedback

Sample 𝑎𝑡 ∼ 𝜋𝑡

How should we update from 𝜋𝑡 to 𝜋𝑡+1 using 𝑟𝑡 1 , … , 𝑟𝑡(𝐴)?

Algorithm for the Full-Information MAB

𝑓 𝜋 = ෍

𝑎=1

𝐴

𝜋 𝑎 𝑅(𝑎) ← We want to find a 𝜋 that maximizes this value

But we don’t know 𝑅(𝑎)

But we get noisy samples of 𝑅 𝑎 , i.e., 𝑟𝑡(𝑎)

Gradient Ascent

Stochastic Gradient Ascent Gradient Ascent

𝑓 𝜋 = ෍

𝑎=1

𝐴

𝜋 𝑎 𝑅(𝑎) ⇒ ∇𝜋𝑓 𝜋 = 𝑅

𝜋𝑡+1 ← 𝜋𝑡 + 𝜂𝑅

𝜋𝑡+1 ← Π 𝜋𝑡+1

For 𝑡 = 1, 2 …

𝜋𝑡+1 ← 𝜋𝑡 + 𝜂𝑟𝑡

𝜋𝑡+1 ← Π 𝜋𝑡+1

For 𝑡 = 1, 2 …

Exponential Weight Update

𝜋𝑡+1 𝑎 ∝ 𝜋𝑡 𝑎 𝑒𝜂𝑟𝑡(𝑎)

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏 𝑒𝜂𝑟𝑡(𝑏)
or

For 𝑡 = 1, 2 …

Better for bandit problems (because we never get 𝜋𝑡 𝑎 = 0)

Exponential Weight Update = KL-Regularized Policy Updates

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏 𝑒𝜂𝑟𝑡(𝑏)

KL Divergence – A Distance Measure for Distributions

KL 𝜋, 𝜋′ = ෍

𝑎

𝜋 𝑎 log
𝜋(𝑎)

𝜋′(𝑎)

KL 𝜋, 𝜋′ ≥ 0

KL 𝜋, 𝜋′ = 0 if and only if 𝜋 = 𝜋′

KL 𝜋, 𝜋′ ≠ KL 𝜋′, 𝜋

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

Regularized Policy Updates

The Improvement of 𝜋 over 𝜋𝑡 on 𝑟𝑡

= argmax
𝜋∈Δ(𝒜)

෍

𝑎

𝜋 𝑎 − 𝜋𝑡 𝑎 𝑟𝑡(𝑎) −
1

𝜂
KL 𝜋, 𝜋𝑡

0

𝜋𝑡

𝜋 − 𝜋𝑡, 𝑟𝑡

0

𝜋𝑡 −KL(𝜋, 𝜋𝑡)

+ =

𝜋𝑡
𝜋𝑡+1

Multi-Armed Bandits

Multi-Armed Bandits

Given: set of arms 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇:

 Learner chooses an arm 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 𝑎𝑡 = 𝑅 𝑎𝑡 + 𝑤𝑡(𝑎𝑡)

Recall: Exponential Weight Updates

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏 𝑒𝜂𝑟𝑡(𝑏)

Exponential Weight Updates for Bandits?

Only update the arm that we choose?

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , 𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 𝑒𝜂𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏 𝑒𝜂𝑟𝑡(𝑏)

No longer observable

Exponential Weight Updates for Bandits?

● Ƹ𝑟𝑡(𝑎) is an “estimator” for 𝑟𝑡(𝑎)

● But we can only observe the reward of one arm

● And let’s set the restriction that we can only construct Ƹ𝑟𝑡 from 𝑟𝑡(𝑎𝑡)

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋 − 𝜋𝑡 , Ƹ𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡 𝜋𝑡+1 𝑎 =

𝜋𝑡 𝑎 𝑒𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑏∈𝒜 𝜋𝑡 𝑏 𝑒𝜂 Ƹ𝑟𝑡(𝑏)

What’s the problem of setting Ƹ𝑟𝑡 = (0,0, … , 𝑟𝑡 𝑎𝑡 , … , 0) ?

Unbiased Reward / Gradient Estimator

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎 =

𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
 if 𝑎𝑡 = 𝑎

0 otherwise

Importance Weighting

Weight a sample by the inverse of the probability we observe it

𝔼 Ƹ𝑟𝑡(𝑎) = Pr 𝑎𝑡 = 𝑎
𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
+ Pr 𝑎𝑡 ≠ 𝑎 0

= 𝜋𝑡 𝑎
𝑟𝑡 𝑎

𝜋𝑡 𝑎

= 𝑟𝑡(𝑎)

Directly Applying Exponential Weights

For 𝑡 = 1,2, … , 𝑇:

Sample 𝑎𝑡 ∼ 𝜋𝑡, and observe 𝑟𝑡(𝑎𝑡)

𝜋1 𝑎 = 1/𝐴 for all 𝑎

Define for all 𝑎:

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′ exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Update policy:

Simple Experiment

code

● 𝐴 = 2, 𝑇 = 1500, 𝜂 = 1/ 𝑇

● For 𝑡 ≤ 500, 𝑟𝑡 = [Bernoulli 0.2 , Bernoulli 0.8]

● For 500 < 𝑡 ≤ 1500, 𝑟𝑡 = [Bernoulli 0.8 , Bernoulli 0.2]

● code

https://bahh723.github.io/rl2025fa_files/exp3.py

Solution 1: Adding Extra Exploration

● Idea: use at least 𝜖 probability to explore uniformly

● Instead of sampling 𝑎𝑡 according to 𝜋𝑡, use

 Then the unbiased reward estimator becomes

𝜋𝑡
′ 𝑎 = 1 − 𝜖 𝜋𝑡 𝑎 +

𝜖

𝐴

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡
′(𝑎)

𝕀 𝑎𝑡 = 𝑎 =
𝑟𝑡(𝑎)

1 − 𝜖 𝜋𝑡 𝑎 +
𝜖
𝐴

𝕀 𝑎𝑡 = 𝑎

Applying Solution 1

For 𝑡 = 1,2, … , 𝑇:

Sample 𝑎𝑡 from 𝜋𝑡
′ = 1 − 𝜖 𝜋𝑡 + 𝜖 uniform(𝒜), and observe 𝑟𝑡(𝑎𝑡)

𝜋1 𝑎 = 1/𝐴 for all 𝑎

Define for all 𝑎:

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡(𝑎)

𝜋𝑡
′(𝑎)

𝕀 𝑎𝑡 = 𝑎

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′ exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Update policy:

Solution 1: Adding Extra Exploration

Solution 2: Reward Estimator with a Baseline

● Still sample 𝑎𝑡 from 𝜋𝑡, but construct the reward estimator as

● Why this resolves the issue?

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎 + 𝑏

Applying Solution 2

For 𝑡 = 1,2, … , 𝑇:

Sample 𝑎𝑡 from 𝜋𝑡, and observe 𝑟𝑡(𝑎𝑡)

𝜋1 𝑎 = 1/𝐴 for all 𝑎

Define for all 𝑎:

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎 + 𝑏

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′ exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Update policy:

baseline

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎or equivalently

Solution 2: Reward Estimator with a Baseline

This is the EXP3 Algorithm

“Exponential weight algorithm for Exploration and Exploitation”

● Exponential weights + either of the two solutions

The Role of Baseline

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏𝑡

𝜋𝑡(𝑎)
𝕀 𝑎𝑡 = 𝑎

𝜋𝑡+1 𝑎 =
𝜋𝑡 𝑎 exp 𝜂 Ƹ𝑟𝑡(𝑎)

σ𝑎′∈𝒜 𝜋𝑡 𝑎′ exp 𝜂 Ƹ𝑟𝑡(𝑎′)

Larger 𝑏𝑡: More exploratory (tends to decrease the probability of the action just chosen)

 – needed to detect changes in the environment.

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

𝜋, Ƹ𝑟𝑡 −
1

𝜂
KL 𝜋, 𝜋𝑡or

We usually set 𝑏𝑡 to be close to the recent performance level of the learner itself

● When finding an action better than the learner itself, increase its probability

● Otherwise, decrease its probability

Summary

● Exponential weight update elements:

● Incremental update (2 equivalent forms)

● Importance weighting because we only observe the reward of the action we choose

(otherwise the reward is biased)

● Baseline or extra uniform exploration to encourage exploration

Review: Exploration Strategies for Bandits

𝑥: context, 𝑎: action, 𝑟: reward

𝑟𝑅
𝑥

𝑎

(context, action) to reward

𝑎𝜋𝑥

context to action distribution

Value-based

Policy-based

MAB CB

Mean estimation
+

EG, BE
Regression

+
EG, BE

KL-regularized update

with reward estimators

(EXP3)

+
baseline, uniform exploration

Next

Uncertainty as bonus

Contextual Bandits

Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇:

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡(𝑥𝑡, 𝑎𝑡)

KL-Regularized Policy Updates

𝜋𝑡+1 = argmax
𝜋∈Δ(𝒜)

෍

𝑎

𝜋 𝑎 Ƹ𝑟𝑡(𝑎) −
1

𝜂
KL(𝜋, 𝜋𝑡)

Ƹ𝑟𝑡 𝑎 =
𝑟𝑡 𝑎 − 𝑏𝑡

𝜋𝑡(𝑎)
 𝕀 𝑎𝑡 = 𝑎

𝜃𝑡+1 = argmax
𝜃

෍

𝑎

𝜋𝜃 𝑎|𝑥𝑡 Ƹ𝑟𝑡(𝑥𝑡 , 𝑎) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑡 , 𝜋𝜃𝑡

(⋅ |𝑥𝑡)

Ƹ𝑟𝑡 𝑥𝑡, 𝑎 =
𝑟𝑡 𝑥𝑡 , 𝑎 − 𝑏𝑡(𝑥𝑡)

𝜋𝜃𝑡
(𝑎|𝑥𝑡)

 𝕀 𝑎𝑡 = 𝑎

In practice, set 𝑏𝑡 as a running average of 𝑟𝑡(𝑎𝑡) to track
the learner’s own performance.

The larger 𝑏𝑡 is, the more exploration.

KL-Regularized Policy Updates

Receive context 𝑥𝑡

For 𝑡 = 1, 2, … , 𝑇:

Take action 𝑎𝑡 ∼ 𝜋𝜃𝑡
⋅ 𝑥𝑡) and receive reward 𝑟𝑡(𝑥𝑡, 𝑎𝑡)

Create reward estimator Ƹ𝑟𝑡 𝑥𝑡, 𝑎 =
𝑟𝑡 𝑥𝑡,𝑎 −𝑏𝑡(𝑥𝑡)

𝜋𝜃𝑡
(𝑎|𝑥𝑡)

 𝕀 𝑎𝑡 = 𝑎

𝜃𝑡+1 = argmax
𝜃

෍

𝑎

𝜋𝜃 𝑎|𝑥𝑡 Ƹ𝑟𝑡(𝑥𝑡, 𝑎) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑡 , 𝜋𝜃𝑡

(⋅ |𝑥𝑡)

Update

KL-Regularized Policy Updates with Batches (PPO)

Receive context 𝑥𝑖

For 𝑡 = 1, 2, … , 𝑇:

Take action 𝑎𝑖 ∼ 𝜋𝜃𝑡
⋅ 𝑥𝑖) and receive reward 𝑟𝑖(𝑥𝑖 , 𝑎𝑖)

Create reward estimator Ƹ𝑟𝑖 𝑥𝑖 , 𝑎 =
𝑟𝑖 𝑥𝑖,𝑎 −𝑏𝑡(𝑥𝑖)

𝜋𝜃𝑡
(𝑎|𝑥𝑖)

 𝕀 𝑎𝑖 = 𝑎

𝜃 ← 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

෍

𝑎

𝜋𝜃 𝑎|𝑥𝑖 Ƹ𝑟𝑖(𝑥𝑖 , 𝑎) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑖 , 𝜋𝜃𝑡

(⋅ |𝑥𝑖)

For 𝑗 = 1, … , 𝑀:

For 𝑖 = 1, … , 𝑁:

For minibatch ℬ ⊂ 1, 2, … , 𝑁 of size 𝐵:

= 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃𝑡
𝑎𝑖 𝑥𝑖

𝑟𝑖 𝑥𝑖 , 𝑎𝑖 − 𝑏𝑡(𝑥𝑖) −
1

𝜂
KL 𝜋𝜃 ⋅ 𝑥𝑖 , 𝜋𝜃𝑡

(⋅ |𝑥𝑖)

𝜃𝑡+1 ← 𝜃

Solve argmax

KL-Regularized Policy Updates with Batches (PPO)

𝜃 ← 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃𝑡
𝑎𝑖 𝑥𝑖

𝑟𝑖 𝑥𝑖 , 𝑎𝑖 − 𝑏𝑡(𝑥𝑖) −
1

𝜂
෍

𝑎

𝜋𝜃 𝑎|𝑥𝑖 log
𝜋𝜃(𝑎|𝑥𝑖)

𝜋𝜃𝑡
(𝑎|𝑥𝑖)

KL 𝜋𝜃 ⋅ 𝑥𝑖 , 𝜋𝜃𝑡
⋅ 𝑥𝑖

Estimating KL by Samples http://joschu.net/blog/kl-approx.html

Sample 𝑎𝑖 ∼ 𝜋𝜃𝑡
(⋅ |𝑥𝑖) and define 𝑘𝑙𝑖(𝜃, 𝜃𝑡) =

𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

− 1 − log
𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

Then 𝔼 𝑘𝑙𝑖(𝜃, 𝜃𝑡) ≈ KL 𝜋𝜃𝑡
⋅ 𝑥𝑖 , 𝜋𝜃 ⋅ 𝑥𝑖

Just need one sample of 𝑎𝑖

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html

PPO with KL Estimator

Receive context 𝑥𝑖

For 𝑡 = 1, 2, … , 𝑇:

Take action 𝑎𝑖 ∼ 𝜋𝜃𝑡
⋅ 𝑥𝑖) and receive reward 𝑟𝑖(𝑥𝑖 , 𝑎𝑖)

Create reward estimator Ƹ𝑟𝑖 𝑥𝑖 , 𝑎 =
𝑟𝑖 𝑥𝑖,𝑎 −𝑏𝑡(𝑥𝑖)

𝜋𝜃𝑡
(𝑎|𝑥𝑖)

 𝕀 𝑎𝑖 = 𝑎

𝜃 ← 𝜃 + ∇𝜃

1

𝐵
෍

𝑖∈ℬ

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃𝑡
𝑎𝑖 𝑥𝑖

𝑟𝑖 𝑥𝑖 , 𝑎𝑖 − 𝑏𝑡(𝑥𝑖) −
1

𝜂
𝑘𝑙𝑖(𝜃, 𝜃𝑡)

For 𝑗 = 1, … , 𝑀:

For 𝑖 = 1, … , 𝑁:

For minibatch ℬ ⊂ 1, 2, … , 𝑁 of size 𝐵:

𝜃𝑡+1 ← 𝜃

𝑘𝑙𝑖(𝜃, 𝜃𝑡) =
𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

− 1 − log
𝜋𝜃(𝑎𝑖|𝑥𝑖)

𝜋𝜃𝑡
(𝑎𝑖|𝑥𝑖)

HW2 task

Applications in Training LLM with RL

LLM Training

Phase 1: training with supervised learning (next-token prediction)

Given a human generated sentence: “A bird lands on Mars”

Earth

𝜋“A bird lands on” Mars

Jupyter

on

𝜋“A bird lands” at

with

This gives a language model 𝜋SL after training

LLM Training

No

𝜋“It’s late.” Yes

I

mind

𝜋“It’s late. No” worries

way

I

𝜋“It’s late.” Please

You’re

very

𝜋“It’s late. You’re” lazy

not

Let the machine (𝜋𝑆𝐿) generate sentences:

+1

-1

Scores given

by human

Phase 2: training with reinforcement learning

LLM Training

Phase 2: training with reinforcement learning

(𝑥, 𝑎, 𝑟) tuples:

(“It’s late”, “No”, +1) (“It’s late. No”, “worries”, +1)

(“It’s late”, “You’re”, -1) (“It’s late. You’re”, “lazy”, -1)

෍

𝑖

𝜋𝜃 𝑎𝑖 𝑥𝑖

𝜋𝜃SL
𝑎𝑖 𝑥𝑖

𝑟𝑖 − 𝑏(𝑥𝑖) −
1

𝜂
𝑘𝑙𝑖(𝜃, 𝜃SL)Maximize

	Slide 1: Bandits 2
	Slide 2: Roadmap
	Slide 3: Policy-Based Bandits
	Slide 4: Policy-Based Bandits
	Slide 5: Policy-Based Bandits
	Slide 6: The Full-Information MAB
	Slide 7: Algorithm for the Full-Information MAB
	Slide 8: Gradient Ascent
	Slide 9: Exponential Weight Update
	Slide 10: Exponential Weight Update = KL-Regularized Policy Updates
	Slide 11: KL Divergence – A Distance Measure for Distributions
	Slide 12: Regularized Policy Updates
	Slide 13: Multi-Armed Bandits
	Slide 14: Multi-Armed Bandits
	Slide 15: Recall: Exponential Weight Updates
	Slide 16: Exponential Weight Updates for Bandits?
	Slide 17: Exponential Weight Updates for Bandits?
	Slide 18: Unbiased Reward / Gradient Estimator
	Slide 19: Directly Applying Exponential Weights
	Slide 20: Simple Experiment
	Slide 21: Solution 1: Adding Extra Exploration
	Slide 22: Applying Solution 1
	Slide 23: Solution 1: Adding Extra Exploration
	Slide 24: Solution 2: Reward Estimator with a Baseline
	Slide 25: Applying Solution 2
	Slide 26: Solution 2: Reward Estimator with a Baseline
	Slide 27: This is the EXP3 Algorithm
	Slide 28: The Role of Baseline
	Slide 29: Summary
	Slide 30: Review: Exploration Strategies for Bandits
	Slide 31: Contextual Bandits
	Slide 32: Contextual Bandits
	Slide 33: KL-Regularized Policy Updates
	Slide 34: KL-Regularized Policy Updates
	Slide 35: KL-Regularized Policy Updates with Batches (PPO)
	Slide 36: KL-Regularized Policy Updates with Batches (PPO)
	Slide 37: Estimating KL by Samples
	Slide 38: PPO with KL Estimator
	Slide 39: Applications in Training LLM with RL
	Slide 40: LLM Training
	Slide 41: LLM Training
	Slide 42: LLM Training

