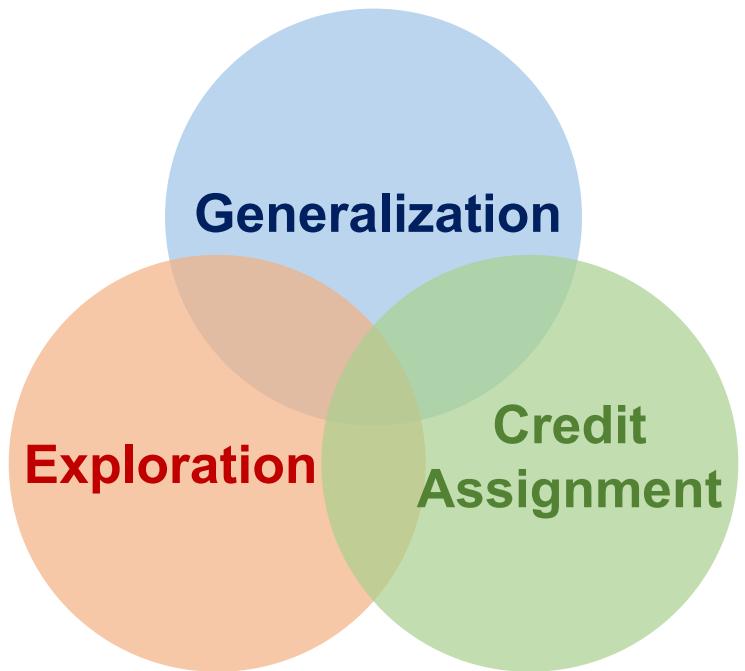
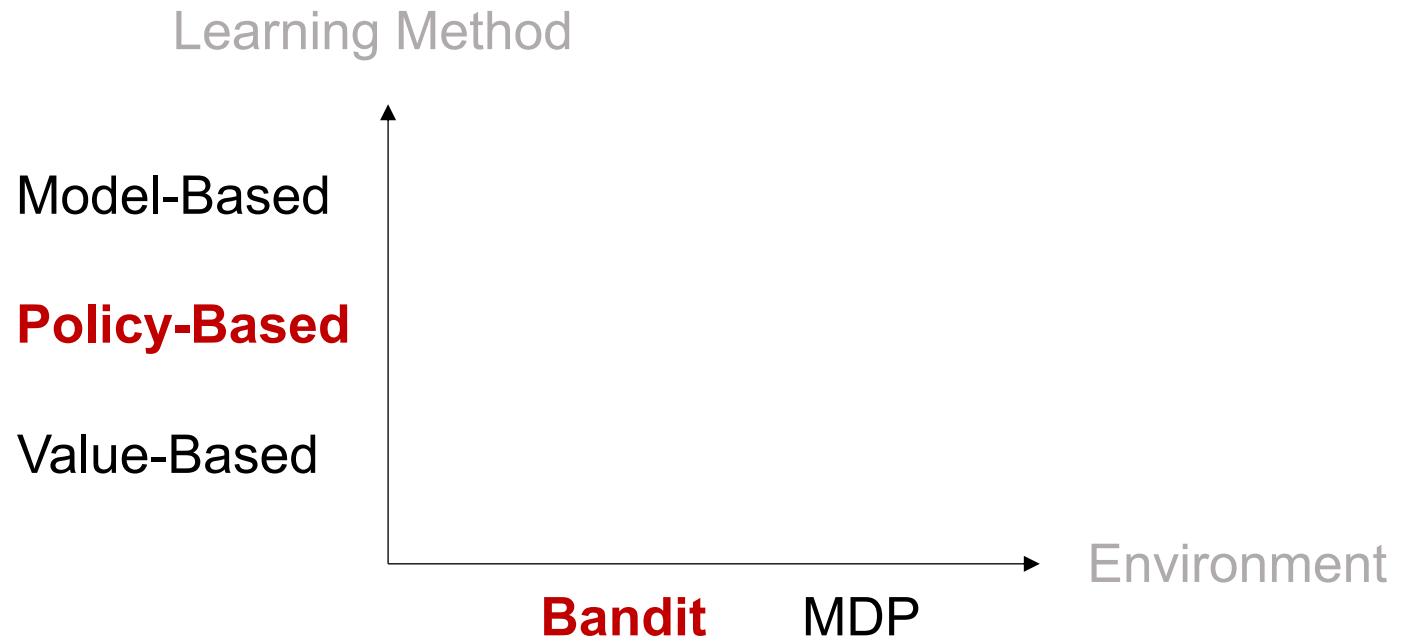


Bandits 2

Chen-Yu Wei

Roadmap

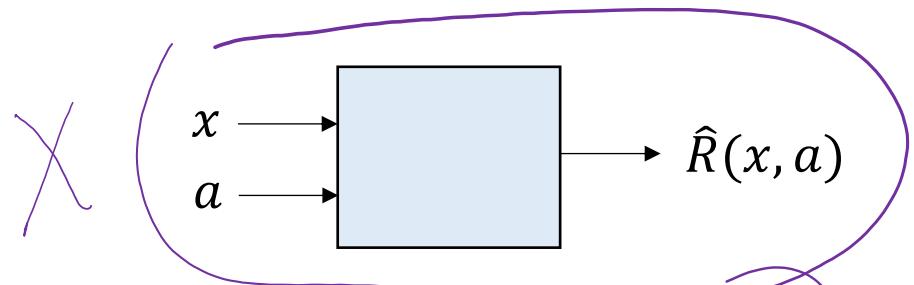
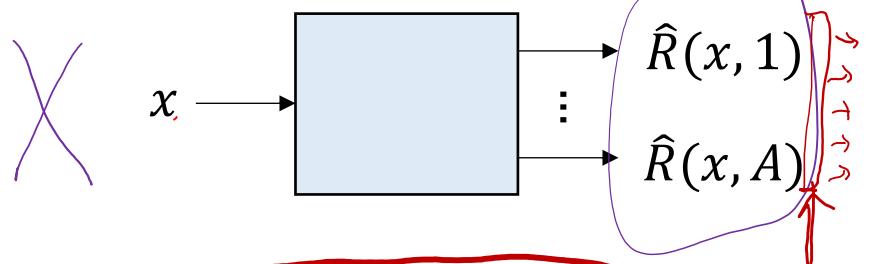


Policy-Based Bandits

- Key challenges: **Exploration** and **Generalization (if there are contexts)**
- Algorithms we will discuss:
 - KL-regularized policy updates (PPO)
 - Policy gradient (REINFORCE)

Policy-Based Bandits

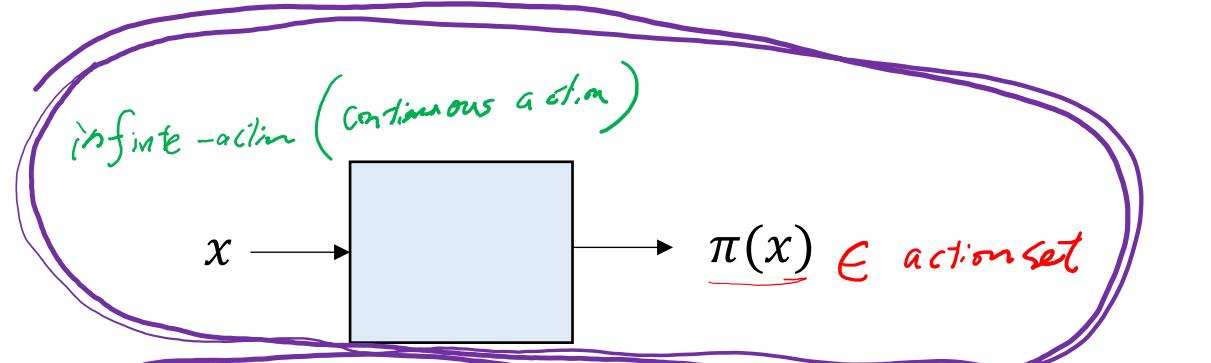
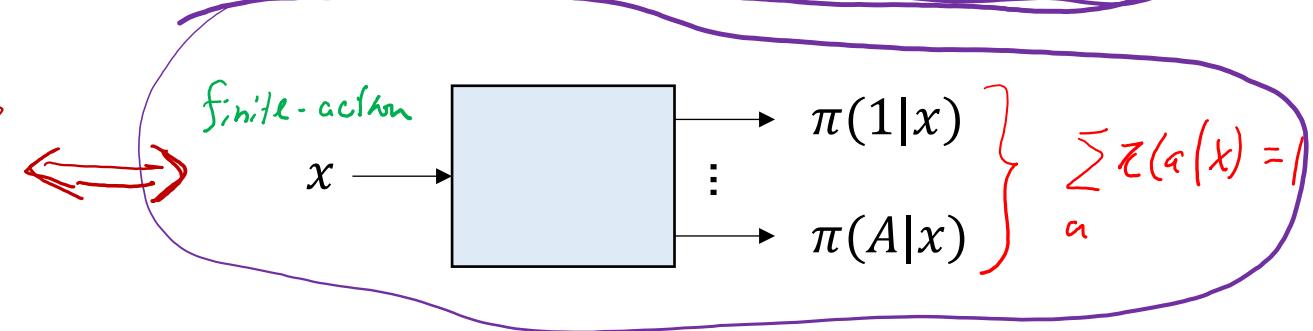
x : context, a : action



$$\pi(a|x) \propto \exp(\lambda \hat{R}(x, a))$$

softmax

Value-based approach



Policy-based approach

Policy-Based Bandits

Why policy-based bandit algorithms?

- Actually, in finite-action contextual bandit problems, value- and policy-based approaches are almost equivalent.
- But we have to use policy-based approaches to handle **continuous action space**.
- They are also different in MDPs. (later in the course)

The Full-Information MAB

Given: set of actions $\mathcal{A} = \{1, \dots, A\}$

For time $t = 1, 2, \dots, T$:

The learner chooses an action a_t

Environment reveals the reward $r_t(a) = R(a) + w_t(a)$ **of all actions**

Policy-based algorithm: Maintain a distribution $\pi_t(a)$ and update it with feedback

Sample $a_t \sim \pi_t$

How should we update from π_t to π_{t+1} using $r_t(1), \dots, r_t(A)$?

$$\bar{\delta}_t \sim r_t$$

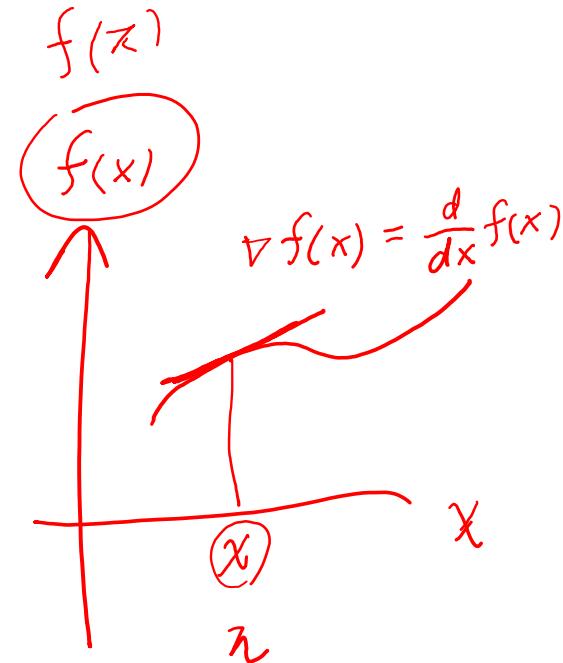
$$\pi_{t+1} \leftarrow \pi_t + \bar{r}_t$$
$$\pi_{t+1}(a) = \pi_t(a) + \bar{r}_t(a)$$

Algorithm for the Full-Information MAB

$$f(\pi) = \sum_{a=1}^A \pi(a)R(a) \quad \leftarrow \text{We want to find a } \pi \text{ that } \mathbf{maximizes} \text{ this value}$$

But we don't know $R(a)$

But we get noisy samples of $R(a)$, i.e., $r_t(a)$



Gradient Ascent

$$\pi \in \mathbb{R}^A$$

$$f(\pi) = \sum_{a=1}^A \pi(a)R(a) \Rightarrow \nabla_{\pi} f(\pi) = R$$

$$\langle \pi, R \rangle$$

Gradient Ascent

For $t = 1, 2 \dots$

$$\pi_{t+1} \leftarrow \pi_t + \eta R$$

$$\pi_{t+1} \leftarrow \Pi(\pi_{t+1})$$

learning rate

Stochastic Gradient Ascent

For $t = 1, 2 \dots$

$$\pi_{t+1} \leftarrow \pi_t + \eta r_t$$

$$\pi_{t+1} \leftarrow \Pi(\pi_{t+1})$$

$$\mathbb{E}[r_t] = R$$

Exponential Weight Update

For $t = 1, 2 \dots$

$$\pi_{t+1}(a) \propto \pi_t(a) e^{\eta r_t(a)}$$

or
$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$

Better for bandit problems (because we never get $\pi_t(a) = 0$)

Exponential Weight Update = KL-Regularized Policy Updates

$$\sum \pi_{t+1}(a) = 1$$
$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$
$$\pi_{t+1} = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}$$

distance (π, π_t)

$\langle \pi, r_t \rangle - \langle \pi_t, r_t \rangle$

$\sum_a \pi(a) r_t(a)$

$g(\pi)$

$\langle \pi, r_t \rangle - \langle \pi_t, r_t \rangle$

$\sum_a \pi(a) r_t(a)$

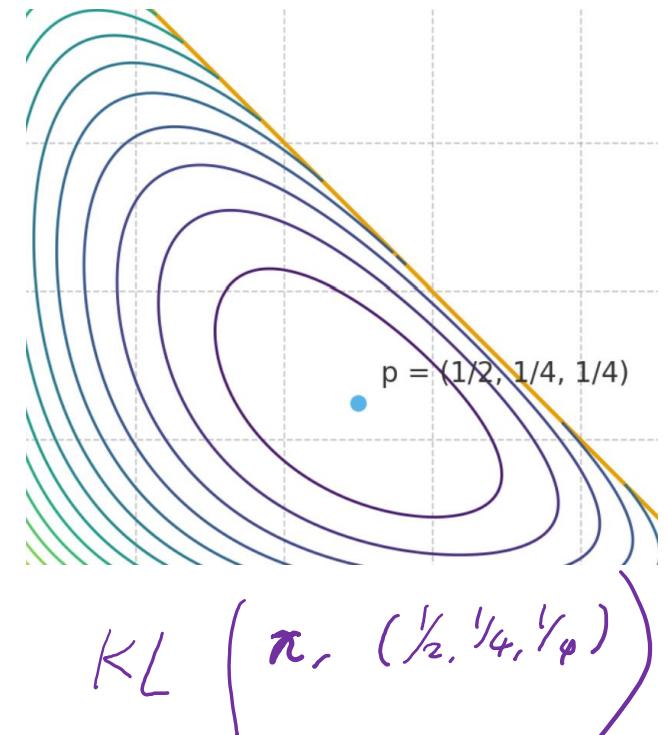
KL Divergence – A Distance Measure for Distributions

$$\text{KL}(\pi, \pi') = \sum_a \pi(a) \log \frac{\pi(a)}{\pi'(a)}$$

$$\text{KL}(\pi, \pi') \geq 0$$

$$\text{KL}(\pi, \pi') = 0 \text{ if and only if } \pi = \pi'$$

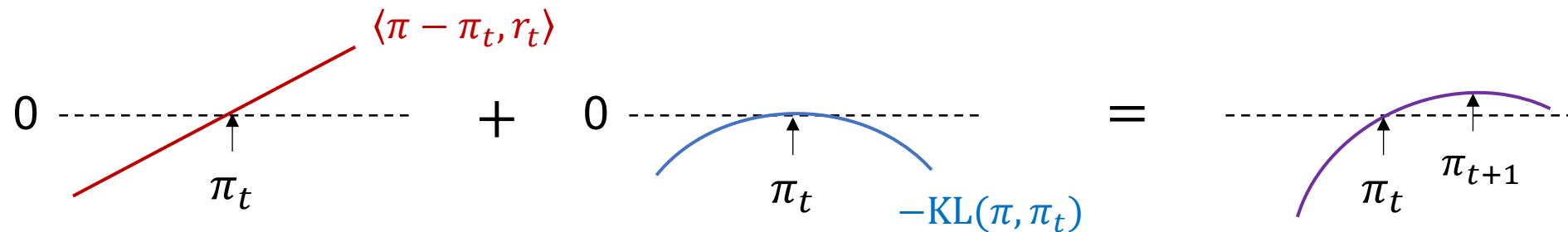
$$\text{KL}(\pi, \pi') \neq \text{KL}(\pi', \pi)$$



Regularized Policy Updates

$$\begin{aligned}\pi_{t+1} &= \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\} \\ &= \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \sum_a (\pi(a) - \pi_t(a)) r_t(a) - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}\end{aligned}$$

The Improvement of π over π_t on r_t



Multi-Armed Bandits

Multi-Armed Bandits

Given: set of arms $\mathcal{A} = \{1, \dots, A\}$

For time $t = 1, 2, \dots, T$:

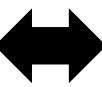
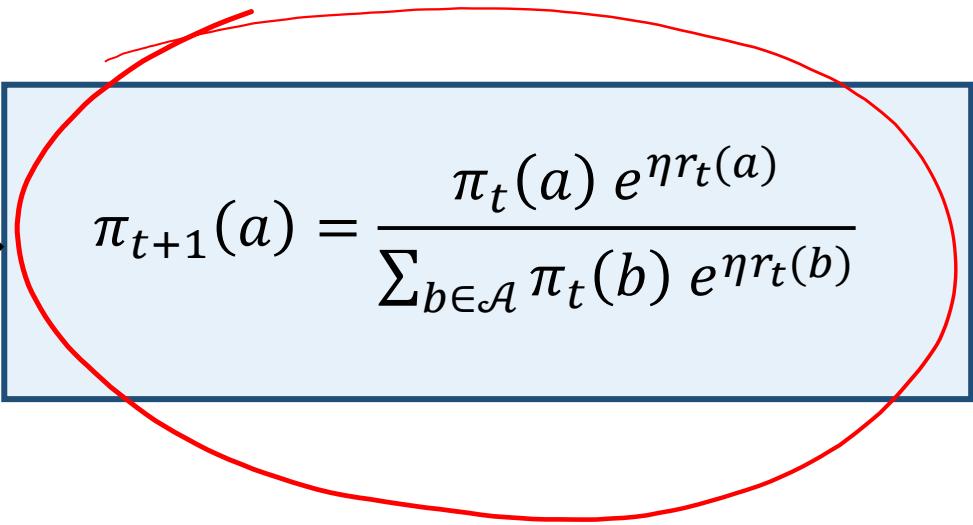
Learner chooses an arm $a_t \in \mathcal{A}$

Learner observes $r_t(a_t) = R(a_t) + w_t(a_t)$

Recall: Exponential Weight Updates

$$\pi_{t+1} = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$



Exponential Weight Updates for Bandits?

$$\pi_{t+1} = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, \mathbf{r}_t \rangle - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta \mathbf{r}_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta \mathbf{r}_t(b)}}$$

No longer observable

Only update the arm that we choose?

Exponential Weight Updates for Bandits?

$$\pi_{t+1} = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, \hat{r}_t \rangle - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta \hat{r}_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta \hat{r}_t(b)}}$$

- $\hat{r}_t(a)$ is an “estimator” for $r_t(a)$
- But we can only observe the reward of one arm
- And let’s set the restriction that we can only construct \hat{r}_t from $r_t(a_t)$

What’s the problem of setting $\hat{r}_t = (0, 0, \dots, r_t(a_t), \dots, 0)$?

real
 $[r_t(1), r_t(2), \dots, r_t(A)]$

$$\mathbb{E}[\hat{r}_t] = (\pi_t(1)r_t(1), \pi_t(2)r_t(2), \dots, \pi_t(A)r_t(A))$$

Unbiased Reward / Gradient Estimator

Weight a sample by **the inverse of the probability we observe it**

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a)} \mathbb{I}\{a_t = a\} = \begin{cases} \frac{r_t(a)}{\pi_t(a)} & \text{if } a_t = a \\ 0 & \text{otherwise} \end{cases}$$

(Fixed a)

$$\begin{aligned}\mathbb{E}[\hat{r}_t(a)] &= \Pr\{a_t = a\} \frac{r_t(a)}{\pi_t(a)} + \Pr\{a_t \neq a\} 0 \\ &= \pi_t(a) \frac{r_t(a)}{\pi_t(a)} \\ &= r_t(a)\end{aligned}$$

$$(0, 0, \dots, \frac{r_t(a_t)}{\pi_t(a_t)}, \dots, 0)$$

Importance Weighting

$$\frac{1}{\pi_t(a)}$$

Directly Applying Exponential Weights

$$\pi_1(a) = 1/A \text{ for all } a$$

For $t = 1, 2, \dots, T$:

Sample $a_t \sim \pi_t$, and observe $r_t(a_t)$

Define for all a :

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Assume $r_t(a) \geq 0$

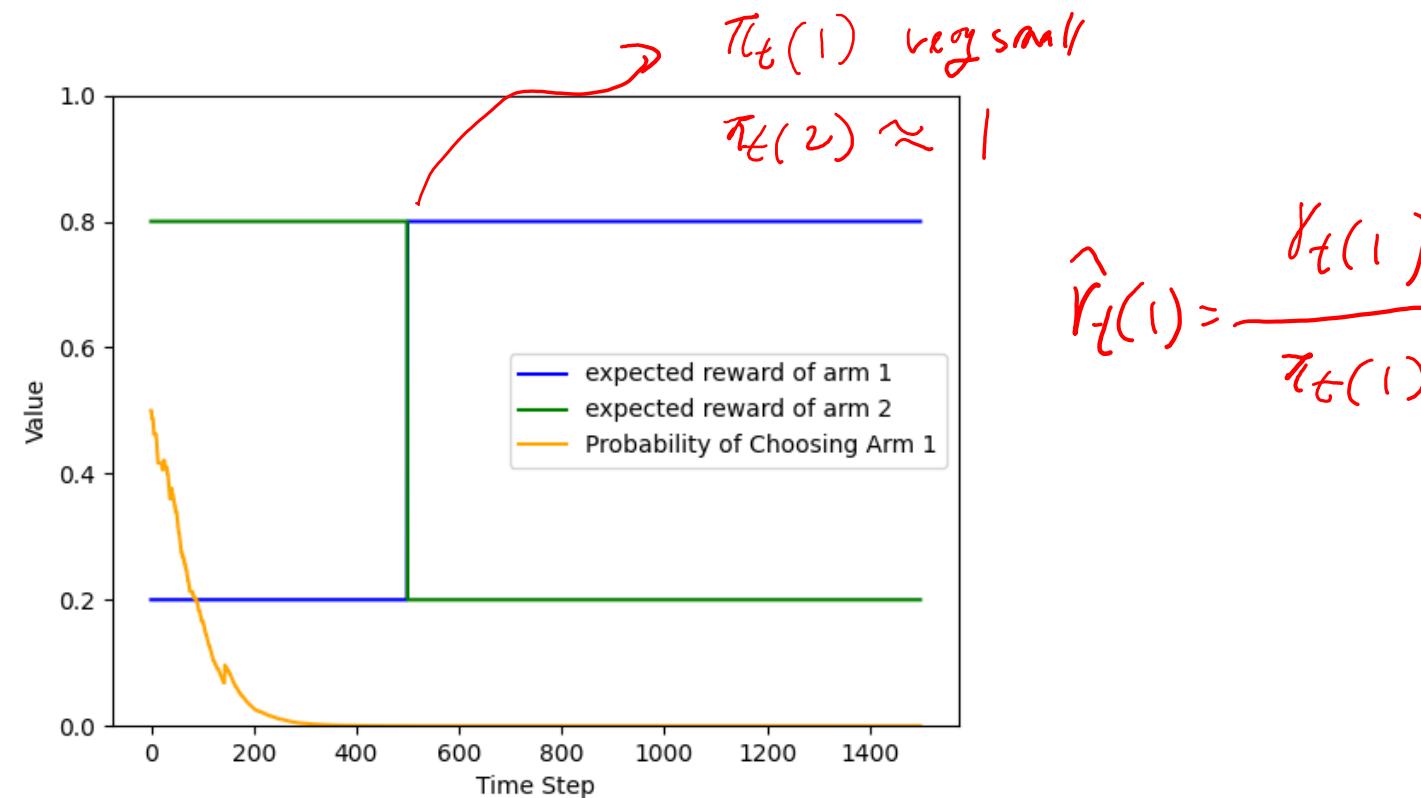
\Rightarrow For arms we chose: $\hat{r}_t(a) \geq 0$

we don't chose $\hat{r}_t(a) = 0$

\Rightarrow increase the prob of the arm
that we just chose

Simple Experiment

- $A = 2, T = 1500, \eta = 1/\sqrt{T}$
- For $t \leq 500$, $r_t = [\text{Bernoulli}(0.2), \text{Bernoulli}(0.8)]$
- For $500 < t \leq 1500$, $r_t = [\text{Bernoulli}(0.8), \text{Bernoulli}(0.2)]$
- [code](#)



Solution 1: Adding Extra Exploration

- **Idea:** use at least ϵ probability to explore uniformly
- Instead of sampling a_t according to π_t , use

$$\pi'_t(a) = (1 - \epsilon)\pi_t(a) + \frac{\epsilon}{A} \Rightarrow \begin{array}{l} \text{w.p. } \epsilon \\ \text{sample } a_t \sim \text{uniform} \end{array} \quad \begin{array}{l} \text{w.p. } 1 - \epsilon \\ \text{sample } a_t \sim \pi_t \end{array}$$

Then the unbiased reward estimator becomes

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi'_t(a)} \mathbb{I}\{a_t = a\} = \frac{r_t(a)}{(1 - \epsilon)\pi_t(a) + \frac{\epsilon}{A}} \mathbb{I}\{a_t = a\}$$

Applying Solution 1

$$\pi_1(a) = 1/A \text{ for all } a$$

For $t = 1, 2, \dots, T$:

Sample a_t from $\pi'_t = (1 - \epsilon)\pi_t + \epsilon \text{ uniform}(\mathcal{A})$, and observe $r_t(a_t)$

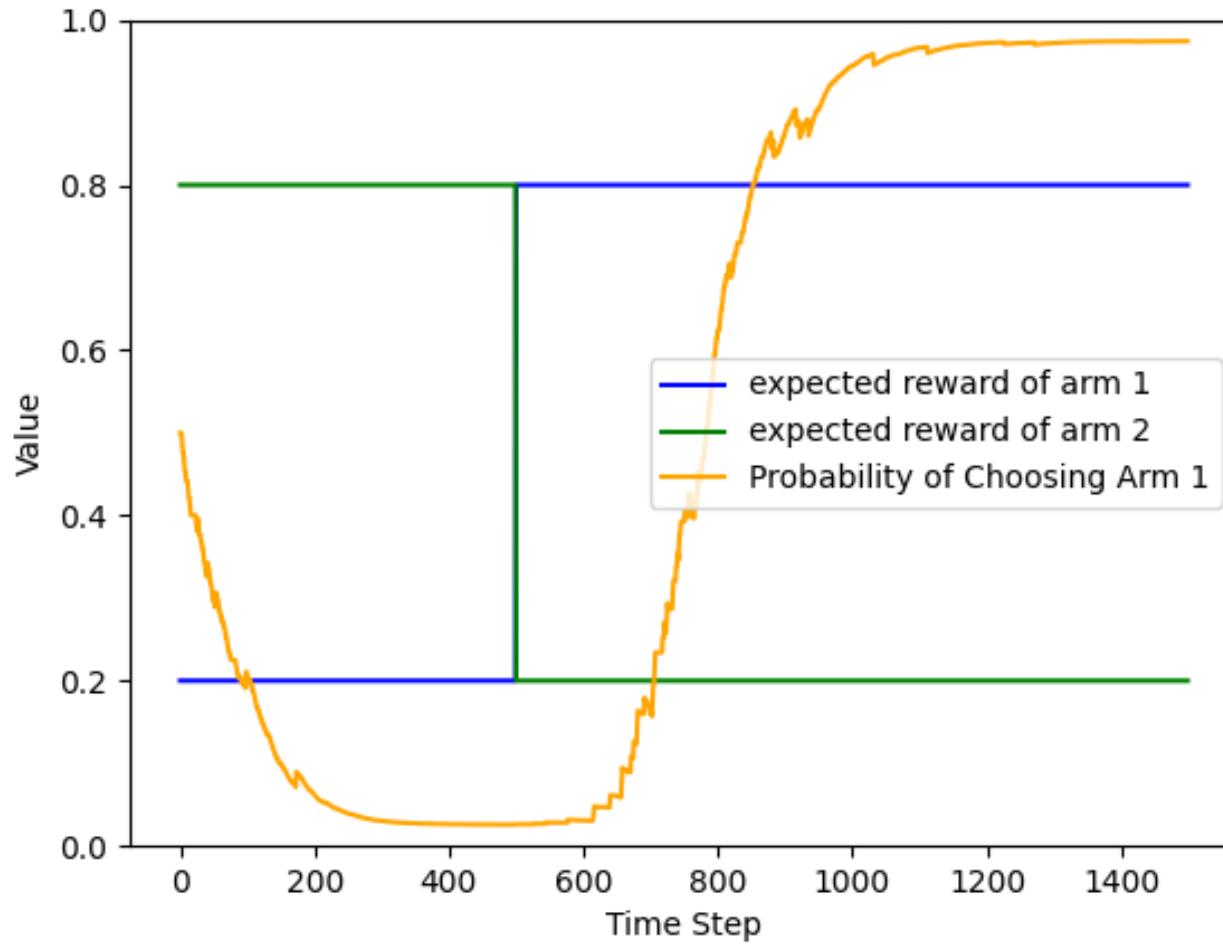
Define for all a :

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi'_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Solution 1: Adding Extra Exploration



Solution 2: Reward Estimator with a Baseline

- Still sample a_t from π_t , but construct the reward estimator as
- Why this resolves the issue?

$$0 \leq b \leq 1$$

$$\hat{r}_t(a) = \frac{r_t(a) - b}{\pi_t(a)} \mathbb{I}\{a_t = a\} + b$$

$$\begin{aligned} \mathbb{E}(\hat{r}_t(a)) &= \pi_t(a) \left(\frac{r_t(a) - b}{\pi_t(a)} + b \right) + (1 - \pi_t(a)) \cdot b = r_t(a) - \underbrace{b}_{\pi_t(a)} + \underbrace{b \pi_t(a)}_{(1 - \pi_t(a))} \\ &= r_t(a) \end{aligned}$$

Applying Solution 2

$$\pi_1(a) = 1/A \text{ for all } a$$

For $t = 1, 2, \dots, T$:

Sample a_t from π_t , and observe $r_t(a_t)$

Define for all a :

$$\hat{r}_t(a) = \frac{r_t(a) - b}{\pi_t(a)} \mathbb{I}\{a_t = a\} + b \text{ or equivalently } \hat{r}_t(a) = \frac{r_t(a) - b}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

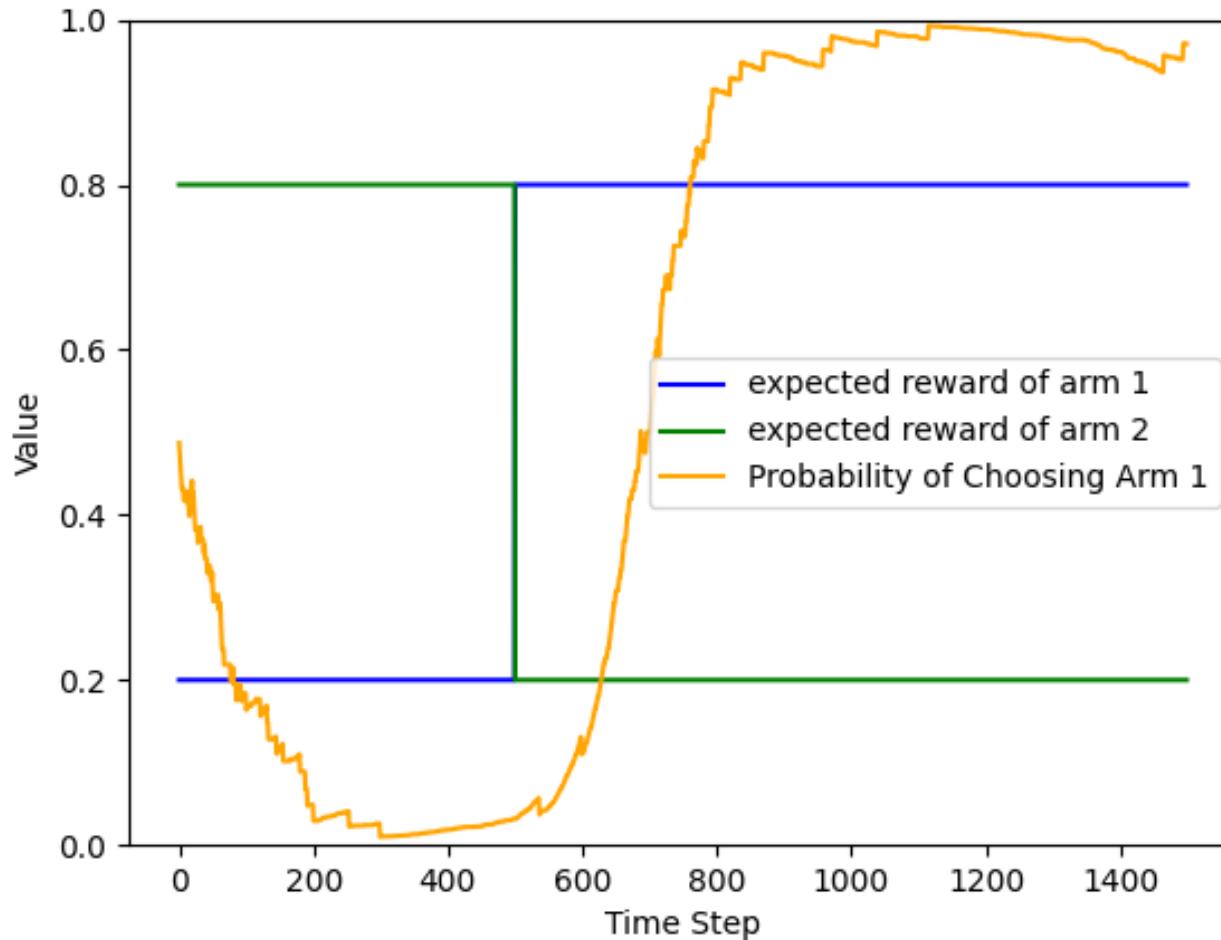
baseline

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

~~$\exp(\gamma b)$~~

Solution 2: Reward Estimator with a Baseline



This is the EXP3 Algorithm

“Exponential weight algorithm for Exploration and Exploitation”

- Exponential weights + either of the two solutions

The Role of Baseline

$$\hat{r}_t(a) = \frac{r_t(a) - b_t}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))} \quad \text{or} \quad \pi_{t+1} = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi, \hat{r}_t \rangle - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}$$

Larger b_t : More exploratory (tends to decrease the probability of the action just chosen)
– needed to detect changes in the environment.

We usually set b_t to be close to the recent performance level of the learner itself

- When finding an action better than the learner itself, increase its probability
- Otherwise, decrease its probability

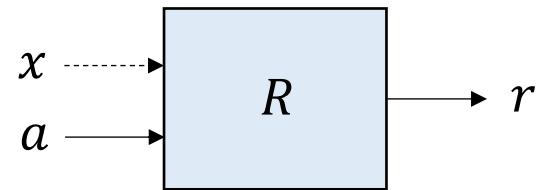
Summary

- Exponential weight update elements:
 - Incremental update (2 equivalent forms)
 - Importance weighting because we only observe the reward of the action we choose (otherwise the reward is **biased**)
 - **Baseline or extra uniform exploration** to encourage exploration

Review: Exploration Strategies for Bandits

x : context, a : action, r : reward

Value-based



(context, action) to reward

MAB

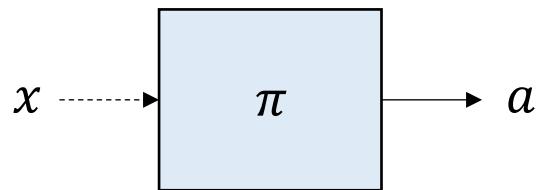
CB

Mean estimation
+
EG, BE

Regression
+
EG, BE

Uncertainty as bonus

Policy-based



context to action distribution

KL-regularized update
with reward estimators

(EXP3)

+

baseline, uniform exploration

Next

Contextual Bandits

Contextual Bandits

For time $t = 1, 2, \dots, T$:

Environment generates a context $x_t \in \mathcal{X}$

Learner chooses an action $a_t \in \mathcal{A}$

Learner observes $r_t(x_t, a_t)$

KL-Regularized Policy Updates

$$\pi_{t+1} = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \sum_a \pi(a) \hat{r}_t(a) - \frac{1}{\eta} \text{KL}(\pi, \pi_t) \right\}$$

$$\hat{r}_t(a) = \frac{r_t(a) - b_t}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

In practice, set b_t as a **running average** of $r_t(a_t)$ to track the learner's own performance.

The larger b_t is, the more exploration.

$$\theta_{t+1} = \operatorname{argmax}_{\theta} \left\{ \sum_a \pi_{\theta}(a|x_t) \hat{r}_t(x_t, a) - \frac{1}{\eta} \text{KL}(\pi_{\theta}(\cdot|x_t), \pi_{\theta_t}(\cdot|x_t)) \right\}$$

$$\hat{r}_t(x_t, a) = \frac{r_t(x_t, a) - b_t(x_t)}{\pi_{\theta_t}(a|x_t)} \mathbb{I}\{a_t = a\}$$

KL-Regularized Policy Updates

For $t = 1, 2, \dots, T$:

Receive context x_t

Take action $a_t \sim \pi_{\theta_t}(\cdot | x_t)$ and receive reward $r_t(x_t, a_t)$

Create reward estimator $\hat{r}_t(x_t, a) = \frac{r_t(x_t, a) - b_t(x_t)}{\pi_{\theta_t}(a | x_t)} \mathbb{I}\{a_t = a\}$

Update

$$\theta_{t+1} = \operatorname{argmax}_{\theta} \left\{ \sum_a \pi_{\theta}(a | x_t) \hat{r}_t(x_t, a) - \frac{1}{\eta} \text{KL}(\pi_{\theta}(\cdot | x_t), \pi_{\theta_t}(\cdot | x_t)) \right\}$$

KL-Regularized Policy Updates with Batches (PPO)

For $t = 1, 2, \dots, T$:

For $i = 1, \dots, N$:

Receive context x_i

Take action $a_i \sim \pi_{\theta_t}(\cdot | x_i)$ and receive reward $r_i(x_i, a_i)$

Create reward estimator $\hat{r}_i(x_i, a) = \frac{r_i(x_i, a) - b_t(x_i)}{\pi_{\theta_t}(a | x_i)} \mathbb{I}\{a_i = a\}$

For $j = 1, \dots, M$:

For minibatch $\mathcal{B} \subset \{1, 2, \dots, N\}$ of size B :

$$\theta \leftarrow \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\sum_a \pi_{\theta}(a | x_i) \hat{r}_i(x_i, a) - \frac{1}{\eta} \text{KL}(\pi_{\theta}(\cdot | x_i), \pi_{\theta_t}(\cdot | x_i)) \right)$$

$$= \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \frac{1}{\eta} \text{KL}(\pi_{\theta}(\cdot | x_i), \pi_{\theta_t}(\cdot | x_i)) \right)$$

$$\theta_{t+1} \leftarrow \theta$$

Solve argmax

KL-Regularized Policy Updates with Batches (PPO)

$$\theta \leftarrow \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \underbrace{\frac{1}{\eta} \sum_a \pi_{\theta}(a|x_i) \log \frac{\pi_{\theta}(a|x_i)}{\pi_{\theta_t}(a|x_i)}}_{\text{KL}(\pi_{\theta}(\cdot|x_i), \pi_{\theta_t}(\cdot|x_i))} \right)$$

Estimating KL by Samples

<http://joschu.net/blog/kl-approx.html>

Sample $a_i \sim \pi_{\theta_t}(\cdot | x_i)$ and define $kl_i(\theta, \theta_t) = \frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)} - 1 - \log \frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)}$

Then $\mathbb{E}[kl_i(\theta, \theta_t)] \approx \text{KL}(\pi_{\theta_t}(\cdot | x_i), \pi_{\theta}(\cdot | x_i))$

Just need one sample of a_i

PPO with KL Estimator

HW2 task

For $t = 1, 2, \dots, T$:

For $i = 1, \dots, N$:

Receive context x_i

Take action $a_i \sim \pi_{\theta_t}(\cdot|x_i)$ and receive reward $r_i(x_i, a_i)$

Create reward estimator $\hat{r}_i(x_i, a) = \frac{r_i(x_i, a) - b_t(x_i)}{\pi_{\theta_t}(a|x_i)} \mathbb{I}\{a_i = a\}$

For $j = 1, \dots, M$:

For minibatch $\mathcal{B} \subset \{1, 2, \dots, N\}$ of size B :

$$\theta \leftarrow \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \frac{1}{\eta} \textcolor{red}{kl}_i(\theta, \theta_t) \right)$$

$$\theta_{t+1} \leftarrow \theta$$

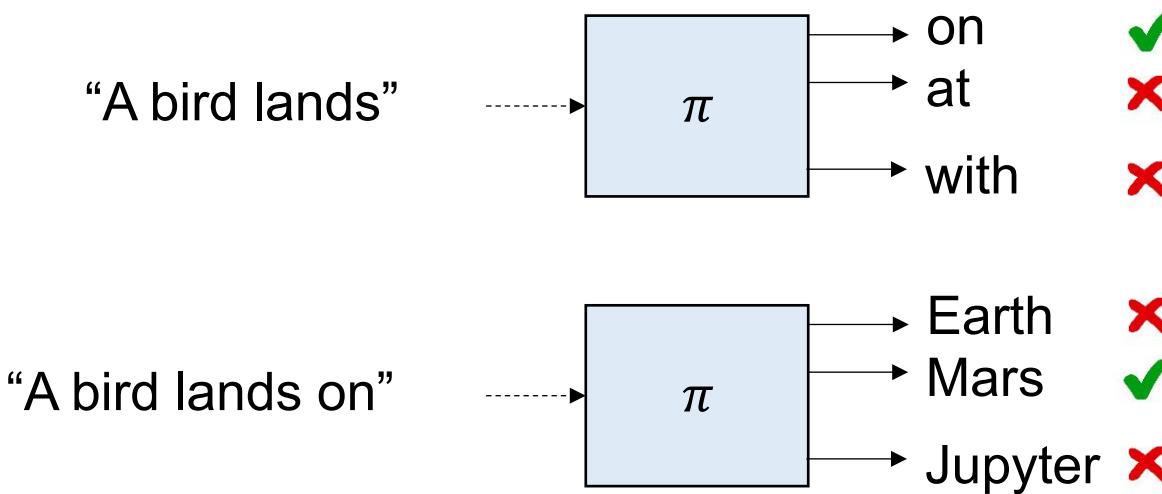
$$kl_i(\theta, \theta_t) = \frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} - 1 - \log \frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)}$$

Applications in Training LLM with RL

LLM Training

Phase 1: training with supervised learning (next-token prediction)

Given a **human generated** sentence: “A bird lands on Mars”

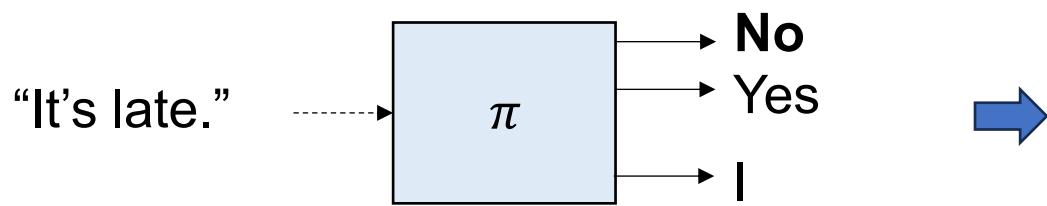
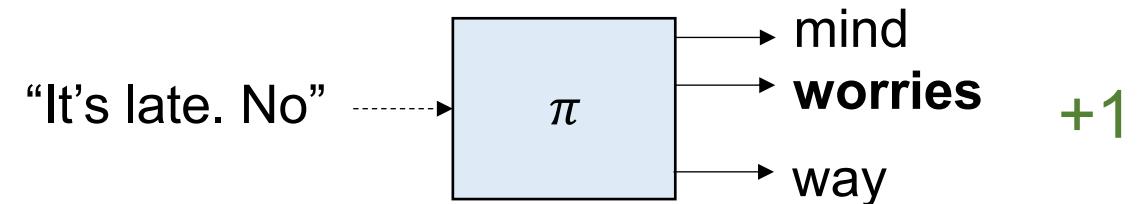
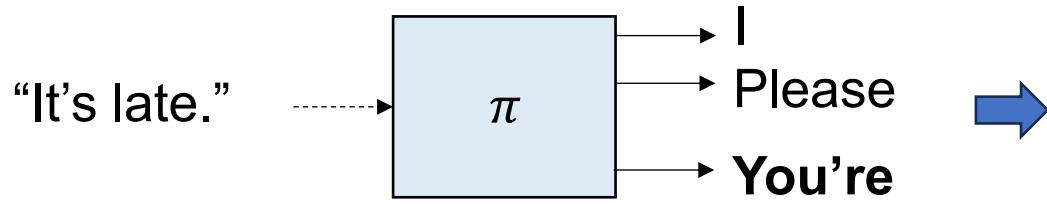
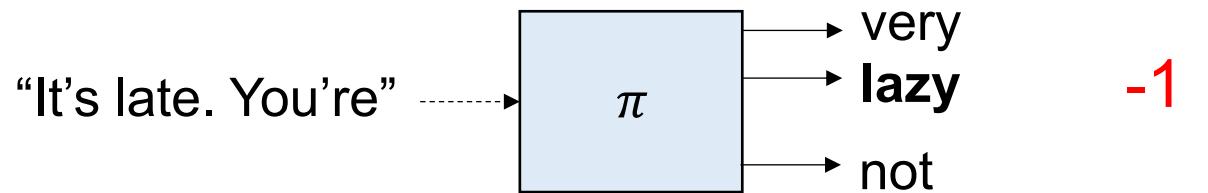


This gives a language model π_{SL} after training

LLM Training

Phase 2: training with reinforcement learning

Let the **machine (π_{SL}) generate** sentences:



LLM Training

Phase 2: training with reinforcement learning

(x, a, r) tuples:

(“It’s late”, “No”, **+1**) (“It’s late. No”, “worries”, **+1**)

(“It’s late”, “You’re”, **-1**) (“It’s late. You’re”, “lazy”, **-1**)

Maximize
$$\sum_i \left(\frac{\pi_\theta(a_i|x_i)}{\pi_{\theta_{\text{SL}}}(a_i|x_i)} (r_i - b(x_i)) - \frac{1}{\eta} kl_i(\theta, \theta_{\text{SL}}) \right)$$