Markov Decision Processes
Chen-Yu Wei



Sequence of Actions
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To win the game, the learner has to take a sequence of actions a; —» a, —» - = ay.
The effect of a particular action may not be revealed instantaneously.
e Some effect may be revealed instantaneously

e Some may be revealed later



Sequence of Actions
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state
(a summary of the current status in a multi-stage game)
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Deterministic World
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Which path gives us the highest total reward?
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V*(s) == maximum total reward starting from state s

Q*(s,a) == maximum total reward starting from state s and taking action a for one step,
and then following the optimal strategy

m*(s) := optimal decision on state s
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Relation between Q*,V*, *:

Q*(s,a) = R(s,a) + V*(next_state(s, a))
V*(s) = max Q*(s,a)

n*(s) = argmax Q*(s, a)
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General algorithm (Value Iteration) --- see next slide for a more detailed version

Repeat until @,V no longer changes:

Q(s,a) « R(s,a) + V(next_state(s,a)) forall (s,a)

V(s) = max Q(s,a)

n*(s) = argmax Q(s, a)

for all s
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Value lteration:

Initialize Qy(s,a) < 0, Vy(s) « 0 forall (s,a)

Fori=1,2,...
If s is a terminal state, this line is

Qi(s,a) « R(s,a) + V;_;(next_state(s,a)) forall (s,a) «~—— simply Q;(s, @) < R(s, )

Vi(s) = max Qi(s,a) for all s

If Q;(s,a) = Q;_1(s,a) for all (s,a): break

*(s) = argmax Qfina1 (s, a)
a

If every path in the graph has length < K, then Value lteration
will terminate in < K + 1 iterations.
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Vi(s) = max Q1(s, a)
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V2(s) = max Q,(s, a)
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V3(s) = max Q3(s, a)
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Va(s) = max Qu(s, a)
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V5(s) = max Qs(s, a)
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Ve(s) = max Q¢(s, a)
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Stochastic Worlds



Now, suppose taking an action does not lead to the desired state deterministically.

Instead, with probabilit@t goes to the state as specified in the figure;

with probability 0.1 each, it goes to the other two states.
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Vi (M3) = Q*(Mz,R) = V(M) =
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Relation between Q*, V*, ™*:

Transition probability P(s’|s,a):

The probability of going to state s’ if we
take action a on state s

Q*(s,a) = R(s,a) + z P(s'|s,a) V*(s")

V*(s) = max Q*(s,a)

n*(s) = argmax Q*(s, a)




Value lteration:

Repeat until @,V no longer changes:

Q(s,a) « R(s,a) + 2 P(s'|s,a) V(s for all (s,a)

V(s) = max Q(s,a) )

n*(s) = argmax Q(s, a)

for all s
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Infinite / Long-Horizon Case



What if there is no “terminal state”?

e Tasks with terminal states
e Tic-Tac-Toe
e Tetris
e Robot doing housework

e Tasks without terminal states (or tasks with very long horizon or loops)
e Driving
e Inventory control



How to gain most reward in the long run? (or, in 1000 rounds)




Repeat until @,V no longer changes? (\Won't terminate)
Q(s,a) « R(s,a) + z P(s'|s,a) V(s") forall (s,a)
S,
V(s) = max Q(s,a) forall s
a

n*(s) = argmax Q(s, a)




Discounting

Q*(s,a) = R(s,a) + yz P(s'|s,a) V*(s)

V*(s) = max Q*(s,a)

n*(s) = argmax Q*(s, a)

To calculate Q*,V*, t* --- see later slide for a more detailed version

Repeat until Q,V becomes stable:
Q(s,a) « R(s,a) + yz P(s'|s,a) V(s") forall (s,a)
SI
V(s) = max Q(s,a) for all s

n*(s) = argmax Q(s, a)




Discounting: Equivalent View

Consider the Q*, V™ in this
modified graph.
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Modified Transition: on any state, taking any action,

terminal state with probability 1 —y

Next state = {following P(s’[s,a) with probability y



Discounting

Effective horizon length (the expected length before going to the dummy terminal state) = ﬁ

e Goal of discounting: Make VV*, Q* finite even when there are positive loops
e y should be strictly smaller than 1

e The modification should still approximate the learner’s goal well enough
e y should be sufficiently close to 1

Usually, y is set to some value like 0.99, but it depends on the application



Discounting

Value lteration with discounting

Initialize Qy(s,a) < 0, Vy(s) « 0 forall (s,a)

Fori=1,2,...

Vi(s) = max Qi(s, a)

m*(s) = argmax Qfinal (s, a)
a

Q;(s,a) « R(s,a) + yV;_;(next_state(s,a)) forall (s,a)

for all s

If |Q;(s,a) — Q;_1(s,a)| < eforall (s,a): break
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0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)

lterationi =1



0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)
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0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)

2.76

lteration i = 3



0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)
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0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)
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Vi(s) « max Q;(s, a)
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0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)

y = 0.95

lterationi = 21



0i(5,0) «R(5,@) +7 ) P(s'15,0) Via(s)

Vi(s) « max Q;(s, a)
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y = 0.95

lteration i = 100
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Vi(s) « max Q;(s, a)

14.02

14.77

15.55

y = 0.95
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