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Sequence of Actions

To win the game, the learner has to take a sequence of actions 𝑎1 → 𝑎2 → ⋯ → 𝑎𝐻.

The effect of a particular action may not be revealed instantaneously. 

● Some effect may be revealed instantaneously

● Some may be revealed later



Sequence of Actions

state

(a summary of the current status in a multi-stage game)



Deterministic World
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Which path gives us the highest total reward? 
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𝑉⋆ 𝑠 ≔ maximum total reward starting from state 𝑠 

𝑄⋆ 𝑠, 𝑎 ≔ maximum total reward starting from state 𝑠 and taking action 𝑎 for one step, 

and then following the optimal strategy

𝜋⋆ 𝑠 ≔ optimal decision on state 𝑠
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𝑉⋆ 𝐻4 =

𝑉⋆ 𝑀4 =

𝑉⋆ 𝐿4 =

𝑄⋆ 𝐻3, 𝑅 =

𝑄⋆ 𝐻3, 𝐺 =

𝑄⋆ 𝑀3, 𝑅 =

𝑄⋆ 𝑀3, 𝑃 =

𝑄⋆ 𝐿3, 𝐺 =

𝑄⋆ 𝐿3, 𝑃 =

𝑉⋆ 𝐻3 =

𝑉⋆ 𝑀3 =

𝑉⋆ 𝐿3 =

𝑄⋆ 𝐻2, 𝑅 =

𝑄⋆ 𝐻2, 𝐺 =

𝑄⋆ 𝑀2, 𝑅 =

𝑄⋆ 𝑀2, 𝑃 =

𝑄⋆ 𝐿2, 𝐺 =

𝑄⋆ 𝐿2, 𝑃 =

𝑉⋆ 𝐻2 =

𝑉⋆ 𝑀2 =

𝑉⋆ 𝐿2 =
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Relation between 𝑄⋆, 𝑉⋆, 𝜋⋆:  

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉⋆(next_state(𝑠, 𝑎)) 

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎) 

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎) 
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General algorithm (Value Iteration) --- see next slide for a more detailed version  

𝑄 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝑉(next_state(𝑠, 𝑎)) 

𝑉 𝑠 = max
𝑎

 𝑄(𝑠, 𝑎) 

Repeat until 𝑸, 𝑽 no longer changes: 

for all (𝑠, 𝑎)

for all 𝑠

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎) 



𝑄𝑖 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝑉𝑖−1(next_state(𝑠, 𝑎)) 

𝑉𝑖 𝑠 = max
𝑎

 𝑄𝑖(𝑠, 𝑎) 

For 𝑖 = 1, 2, …

for all (𝑠, 𝑎)

for all 𝑠

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄final(𝑠, 𝑎) 

Initialize  𝑄0 𝑠, 𝑎 ← 0, 𝑉0(𝑠) ← 0   for all (𝑠, 𝑎)

Value Iteration: 

If 𝑄𝑖(𝑠, 𝑎) = 𝑄𝑖−1(𝑠, 𝑎) for all (𝑠, 𝑎):   break

If every path in the graph has length ≤ 𝐾, then Value Iteration 

will terminate in ≤ 𝐾 + 1 iterations.  

If 𝑠 is a terminal state, this line is 

simply 𝑄𝑖 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎  
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𝑉0 𝑠 = 0

𝑄0 𝑠, 𝑎 = 0
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𝑉1 𝑠 = max
𝑎

 𝑄1(𝑠, 𝑎)

𝑄1 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉0(next(𝑠, 𝑎))
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𝑉2 𝑠 = max
𝑎

 𝑄2(𝑠, 𝑎)

𝑄2 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉1(next(𝑠, 𝑎))
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𝑉3 𝑠 = max
𝑎

 𝑄3(𝑠, 𝑎)

𝑄3 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉2(next(𝑠, 𝑎))
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𝑉4 𝑠 = max
𝑎

 𝑄4(𝑠, 𝑎)

𝑄4 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉3(next(𝑠, 𝑎))
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𝑉5 𝑠 = max
𝑎

 𝑄5(𝑠, 𝑎)

𝑄5 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉4(next(𝑠, 𝑎))
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𝑉6 𝑠 = max
𝑎

 𝑄6(𝑠, 𝑎)

𝑄6 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝑉5(next(𝑠, 𝑎))



Stochastic Worlds
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Now, suppose taking an action does not lead to the desired state deterministically.  

Instead, with probability 0.8, it goes to the state as specified in the figure; 

              with probability 0.1 each, it goes to the other two states.  
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𝑉⋆ 𝐻4 =

𝑉⋆ 𝑀4 =

𝑉⋆ 𝐿4 =

𝑄⋆ 𝐻3, 𝑅 =

𝑄⋆ 𝐻3, 𝐺 =

𝑄⋆ 𝑀3, 𝑅 =

𝑄⋆ 𝑀3, 𝑃 =

𝑄⋆ 𝐿3, 𝐺 =

𝑄⋆ 𝐿3, 𝑃 =

𝑉⋆ 𝐻3 =

𝑉⋆ 𝑀3 =

𝑉⋆ 𝐿3 =
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𝑉⋆ 𝐻3 =

𝑉⋆ 𝑀3 =

𝑉⋆ 𝐿3 =

𝑄⋆ 𝐻2, 𝑅 =
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𝑄⋆ 𝑀2, 𝑅 =

𝑄⋆ 𝑀2, 𝑃 =

𝑄⋆ 𝐿2, 𝐺 =

𝑄⋆ 𝐿2, 𝑃 =

𝑉⋆ 𝐻2 =

𝑉⋆ 𝑀2 =

𝑉⋆ 𝐿2 =
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Relation between 𝑄⋆, 𝑉⋆, 𝜋⋆:  

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉⋆(𝑠′) 

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎) 

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎) 

Transition probability 𝑃 𝑠′ 𝑠, 𝑎 : 

The probability of going to state 𝑠′ if we 

take action 𝑎 on state 𝑠



𝑠0

𝐻1

𝑀1

𝐿1

𝐻2

𝑀2

𝐿2

𝐻3

𝑀3

𝐿3

𝐻4

𝑀4

𝐿4

0

-Ber(0.5)

-1.0

0

+5

+3

+1

Value Iteration: 

𝑄 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

 𝑄(𝑠, 𝑎) 

Repeat until 𝑸, 𝑽 no longer changes: 

for all (𝑠, 𝑎)

for all 𝑠

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎) 



Infinite / Long-Horizon Case



What if there is no “terminal state”? 

● Tasks with terminal states

● Tic-Tac-Toe

● Tetris 

● Robot doing housework 

● Tasks without terminal states  (or tasks with very long horizon or loops)

● Driving 

● Inventory control
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How to gain most reward in the long run?   (or, in 1000 rounds)



𝑄 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

 𝑄(𝑠, 𝑎) 

for all (𝑠, 𝑎)

for all 𝑠

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎) 
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Repeat until 𝑸, 𝑽 no longer changes?  (Won’t terminate)



Discounting

𝑄 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

 𝑄(𝑠, 𝑎) 

for all (𝑠, 𝑎)

for all 𝑠

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎) 

Repeat until 𝑄, 𝑉 becomes stable:  

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉⋆(𝑠′) 

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎) 

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎) 

To calculate 𝑄⋆, 𝑉⋆, 𝜋⋆ --- see later slide for a more detailed version 



Discounting:  Equivalent View

Original Transition 

Modified Transition:  on any state, taking any action, 

Next state =  ቊ
terminal state 
following 𝑃(𝑠′|𝑠, 𝑎)

 
with probability 1 − 𝛾
with probability 𝛾

1 − 𝛾

1 − 𝛾

Consider the 𝑄⋆, 𝑉⋆ in this 

modified graph. 



Discounting

Effective horizon length (the expected length before going to the dummy terminal state) = 
1

1−𝛾
    

● Goal of discounting:  Make 𝑉⋆, 𝑄⋆ finite even when there are positive loops

● 𝛾 should be strictly smaller than 1

● The modification should still approximate the learner’s goal well enough

● 𝛾 should be sufficiently close to 1  

Usually, 𝛾 is set to some value like 0.99, but it depends on the application



Discounting

𝑄𝑖 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾𝑉𝑖−1(next_state(𝑠, 𝑎)) 

𝑉𝑖 𝑠 = max
𝑎

 𝑄𝑖(𝑠, 𝑎) 

For 𝑖 = 1, 2, …

for all (𝑠, 𝑎)

for all 𝑠

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄final(𝑠, 𝑎) 

Initialize  𝑄0 𝑠, 𝑎 ← 0, 𝑉0(𝑠) ← 0   for all (𝑠, 𝑎)

Value Iteration with discounting 

If 𝑄𝑖 𝑠, 𝑎 − 𝑄𝑖−1 𝑠, 𝑎 ≤ 𝜖 for all (𝑠, 𝑎):   break
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𝛾 = 0.95 𝛾 = 1.0
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𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1(𝑠′)

𝑽𝒊 𝒔 ← max
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 𝑄𝑖(𝑠, 𝑎)  

Iteration 𝑖 = 1
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Iteration 𝑖 = 2
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